
NASA Technical Paper 1441

of Assembly-Language Software

Dale J. Arpasi

APRIL 1979

NASA

TECH LIBRARY KAFB, NM

NASA Technical Paper 1441

Interactive Debug Program for
Evaluation and Modification
of Assembly-Language Software

Dale J. Arpasi
Lewis Research Center
Cleveland, Ohio

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1979

CONTENTS

Page
SUMMARY . 1

INTRODUCTION . 1

GENERAL CONSIDERATIONS . 2

DEBUG PROGRAM CAPABILITIES . 4
Initialization . 4
Addressing . 4
Information Display . 5
Program Modifications . 6
Execution and Analysis . 6

PROGRAM DESCRIPTION . 8
Command Structure . 8
Name Assignments . 8
Address Formats . 9
Debug Assembler . 10
Scaling . 11

DEBUG COMMANDS . 12

Initialization Command . YDEBUG . 13
Source-Name Lnput Command . UDEBUG . 13
Sector Base Statistics Command . BDEBUG . 14
Display Command . PDEBUG . 15
Modification Command . CDEBUG . 16
Program Addition Command . ADEBUG . 17
Subroutine Specification and Execution Command . VDEBUG 17
Program Execution Command . XDEBUG . 17
Breakpoint Command . SDEBUG . 19
Return Command . RDEBUG . 19
Transfer Command . TDEBUG . 20

CONCLUSIONS . 21

APPENDIX . DESCRIPTION O F DEBUG PROGRAM 22

REFERENCES . 26

iii

I .

SUMMARY

Using the digital computer in real-time aircraft propulsion control systems re-
quires extensive use of assembly-language programming. Because this language is far
removed from the actual control equations, significant control-software evaluation and
debugging problems often occur. Therefore, software is needed to alleviate these
problems.

Presently available debug software is not sufficient to raise operator-computer in-
teraction to the level where software evaluation and debugging become acceptable.
Therefore, a higher level debug program was developed. This program uses informa-
tion supplied by the computer's assembler and loader and by the operator to simplify
problem recognition and to permit straightforward modifications to the software being
debugged.

Addressing techniques are used that allow operator-computer interaction by means
of easily recognizable names and relative addresses as they appear in the source list-
ing. Many data formats are available, including one that specifies data in engineering
units. An instruction coder and decoder allow program instructions to be specified by
their assembler mnemonic representation and to be evaluated during execution of the
program that is to be debugged. Thus, the operator need not be concerned with actual
machine coding. Execution terminators are included that, when used, will stop debug
execution of the program i f certain prespecified conditions a re encountered. The oper-
ator may specify execution termination when conditions are encountered that modify the
program counter o r the selected memory locations o r that cause arithmetic overflows.
Other features incorporated into the debug program include an on-line assembler that
makes it easier to modify the program that is to be debugged.

The debug program is described in detail in this report. The debug commands,
their sequencing, and their options are described and illustrated. Functional dia-
grams of the debug program are given in the appendix.

INTRODUCTION

Recent advances in digital computer hardware have enhanced its use in control ap-
plications. Controls requiring extensive computations and logical decisions, such as
those for modern aircraft propulsion systems, are particularly well suited for imple-
mentation on a digrtal computer. Aircraft propulsion controls, however, are usually
bound by stringent computation-tiqne limits.

" - "- I-. " .. . , ,

Computation speed depends on the programming language used to implement the
control equations. In general, the more removed the programming language is from the
basic machine instruction set, the slower is its computation. Therefore, computation-
time limits often preclude the use of higher order languages that offer a format close to
the actual control equations and force the programmer to use assembly language. Be-
cause assembly language is far removed from the actual control equations, significant
program debugging problems may be encountered.

Debugging consists of analyzing and modifying the assembly-language program. It
may be done through direct operator-computer interaction, which is itself very prone to
e r ror because of the bookkeeping involved, o r through a buffer program that raises this
interaction to a more comprehensible level. Although such programs (referred to as
debug programs) are usually available with every computer, they are generally not ex-
tensive enough to meet the needs of the control-system programmer. The debug pro-
gram described in this report offers more versatile addressing, display, execution,
and on-line assembly capabilities than previous debug programs. It was written for the
Honeywell HDC-601 flight-qualified computer and the Honeywell DDP-516/316 compu-
ter. The philosophy and techniques used in developing the program are described in de-
tail so that the concepts can be applied to other computers. Because this report is also
intended as a users guide, operational details and examples a re given.

The control-software debugging process requires operational data for software
evaluation. These data are generally collected by running the software in conjunction
with the system to be controlled (or a real-time simulation of the system). The data-
collection process is made simpler by a data-collecting and display program called
INFORM (ref. 1). This program is a high-level, operator-computer interaction pro-
gram described in this report offers more versatile addressing, display, execution, and
on-line assembly capabilities than previous debug programs. It was written for the
software evaluation and modification capabilities to the control programmer.

GENERAL CONSIDERATIONS

The debug program was written for the Honeywell HDC-601 flight-qualified com-
puter and the Honeywell DDP-516/316 computer. The program depends on the compu-
ter architecture and instruction set. The computers are described in detail in refer-
ences 2 and 3. The HDC-601 uses a 16-bit word with the most significant bit designated
as bit 1. The computer has four manipulative registers:

(1) A register (AREG) - the primary arithmetic and utility register
(2) B register (BREG) - the secondary arithmetic register
(3) X register (XREG) - the index rigister
(4) KEYS - the register used to contain machine status information

2

The computer uses sectorized addressing: Memory is divided into 512-word sectors.
Communication within a sector is done directly, but communication between sectors
must be done indirectly through intersector references. The one exception is that com-
munication with the first memory sector can be made directly from any sector. Inter-
sector references, therefore, can be stored in the first sector. The computer's assem-
bler and loader also allow an area within each sector to be set aside for intersector ref-
erences. This area is referred to a s the sector base area.

The HDC-601 instruction set can be divided into two categories: those requiring an
operand, and those not requiring an operand. Instructions requiring an operand are

(1) Memory reference instructions
(2) Input-output instructions
(3) Shift instructions

Each instruction has a three-character, assembly-language mnemonic representation
and a machine-language operational code (op-code). These considerations and those of
the preceding paragraph a re important to the structuring of the debug program and must
be considered in using the program concepts to formulate debug programs for other
digital computers.

The basic philosophy of the debug program development was to use assembler-,
loader-, and operator-supplied information to provide operator-computer interaction in
an understandable format. The assembler supplies a source listing and a table of
source names. The debug program uses these names to simplify operator address
recognition. The loader supplies the relocation base addresses and the locations of
sector base areas. The debug program uses them to eliminate the need for absolute
address specification and to efficiently automate program modifications. Through
INFORM, the operator may assign scale factors and names to memory addresses. This
allows data to be specified directly in engineering units.

The computer's instruction set is incorporated into the debug program. Because
both the mnemonics and the op-codes a re included, program modifications can be
structured in assembly language without resorting to machine coding. Conversely,
machine coding for program listings can be automatically interpreted in an easily under-
standable format.

Because the command structure of the debug program is fully compatible with the
command structure of INFORM (ref. l), the programmer can incorporate any INFORM
commands with any debug commands for an evaluation and modification program that
suits his needs.

3

.

DEBUG PROGRAM CAPABILITIES

The capabilities of the debug program a re
(1) Initialization
(2) Addressing
(3) Information display
(4) Program modifications
(5) Execution and analysis

Each capability is discussed in general in this section to give an understanding of the
program concepts. Detailed program descriptions and operational examples a re given
in subsequent sections.

Initialization

The debug program must be initialized before execution to provide the information
necessary to its operation. That is, memory areas must be specified to c0ntai.n

(1) The debug name tables (source names assigned to addresses within the program
to be debugged)

(2) The debug on-line assembler's buffer (the area used to assemble operator-
supplied instructions)

(3) Program additions (the area assigned for additions to the program being de-

bugged)
(4) The INFORM name tables (names and scale factors assigned to any memory

address when INFORM commands a re being used)
In addition, the operator may specify a protected memory area that cannot be violated
during debug execution of his software. After memory-area assignments are speci-
fied, the operator may specify the sector base areas and fill the name tables. The de-
bug name tables may be filled manually (e. g., keyboard) o r automatically (e. g., paper
tape) by entering the table of source names obtained during assembly of the program
that is to be debugged. Any number of programs o r subroutines can be debugged simul-
taneously, and the source-name assignment is limited only by the area set aside.

Addressing

Flexible operator-address specification is offered in the debug program. It allows
referencing of an absolute octal address, a source name, an INFORM name, and a re-
locatable octal address. Arithmetic-address stringing is permitted in combinations of
the preceding. In addition, special addressing - including undefined addressing, index-

4

ing, and indirect address specification - is available for instruction operands during
on-line assembly.

Two locations, called the first and last address counters, are used to specify the
initial and final address limits for debug commands. The first address counter is also
used to establish the base address for address displacements. When a source name or
a relocatable octal address is specified, the first address counter is used to determine
which progran; i s being debugged and which source-name table is referenced. The re-
location base for this program (specified. during initialization) is added to the specified
address to form the absolute address. With this address mode the operator may easily
work from the source listing of the program currently being debugged. An address for-
mat is available to reference names external to the current program.

Inform ation Display

An information display package is contained i n the debug program. Any of the four
registers (AREG, BREG, XREG, and KEYS) or any memory location or series of mem-
ory locations can be displayed i n an operator-selected format. Display formats are
available for octal integers, decimal single- and double-precision integers, and decimal
floating-point numbers. (Because all decimal displays can be descaled, the display can
be in engineering units.) Display formats are also available that specify the address as
containing ASCII characters or a direct-address constant.

Additional display formats a re available for memory display only. Display of the
effective address of a &rect-address constant (deciphering of the indirect chain) and
display of l~locl~-zero storage (the number of successive addresses containing zero) may
be specified. I n addition, the address may be specified to contain an instruction that
will cause the display of the mnemonic and operand, i f any. If the instruction is a
memorg.”~‘cferencing instruction, the status of the index and in&rect indcators is also
displayed.

Two display modes are available: the print mode and the list mode. The print
mode simply lists the address and its contents in the specified format. The list mode
produces a listing similar to that of the machine assembler. Only the print mode is
available for register display.

It is often preferable to separate the display commands from the information to be
displayed. This capability is incorporated in the display package: The operator can in-
put commands from one unit (e. g . , teletype) and have the display appear on another unit
(e. g. , line printer).

5

Program "Idifications

The debugging process often involves significant program and data modifications.
Without a comprehensive debug package the operator is forced either to frequently as-
semble the source program and reload the resulting object program or to modify the
machine language. Both alternatives are time consuming and the latter is particularly
prone to e r ror . By incorporating an on-line assembler, the debug program discussed
i n this report provides a quick turnaround for all program modifications.

The debug assembler is similar to the machine assembler in that location, instruc-
tion, and address fields must be specified. The location field is used to specify the
relati1.e location of the entry i n the program mo&fication. The instruction field is used
to specify thc instruction mnemonic and for indirect referencing. The address field is
used to specifv the instruction operand if necessary.

All the machine-instruction mnemonics are available. In addition, pseudo-operation
1xnemonics (pseudo-ops) a re available to specify octal entries, scaled o r unscaled deci-
mal integer or floating-point entries, direct-address constants, ASCII information, and
block storage requirements.

Address specification has been defined. Special addressing is available to refer-
ence location-field entries or to postpone address definition. All addresses must be de-
fined before the program modification input is completed.

When the operator signals the input to be complete, the program modifications are
assembled. The machine coding is formed and the required intersector referencing is
computed from the sector base information supplied during initialization. A source
listing is then provided for operator verification. The operator may revise the modifi-
cations o r signal their incorporation into this program.

If the modifications are actually additions to the program, they are placed in the
program addition area specified during initialization. Linkages between the programs
and the addition a re automatically determined.

At any time the operator may transfer the modified program from memory to per-
manent storage (e. g., paper tape). Verification and loading capabilities are incorpor-
ated. Transfer from one memory location to another, with masking of selected bits, is
permitted.

Execution and Analysis

The debug program provides a method of execution and analysis that minimizes the
possibility of damage to the program to be debugged and maximizes the execution op-
tions. The program to be debugged is not executed directly in the debug execution rou-
tine. Rather, each instruction is lifted from the program, analyzed, and rebuilt for

6

execution inside the routine. All machine registers are synthesized. The first address
counter is used as the pseudo program counter, and internal locations are set aside as
the pseudo instruction register. The registers AREG, BREG, XREG, and KEYS are
also synthesized as pseudoregisters. With this method of execution, control never
leaves the debug execution routine. By using instruction analysis combined with the
execution mode commands, the operator can avoid inadvertent destruction of his pro-
gram by programming errors.

When the content of the first address counter is set, the execution routine returns
the vital statistics of the instruction to be executed: a complete listing of the instruc-
tion, the contents of the direct address of memory reference instructions, the effective
address of these instructions (deciphering both indirect chains and indexing), and the
contents of the pseudoregisters. The operator is advised if the instruction is not exe-
cutable o r if a protected area is about to be violated.

After the listing, the operator can transfer control to another debug routine to ob-
tain additional information, to modify his program, or to change the pseudoregisters.
Alternatively, he can execute his program either on an instruction-to-instruction basis
o r by using one of the following execution modes:

(1) Execute to the termination address specified by the last address counter
(2) Execute to a memory-modifying instruction
(3) Execute to a program-counter-modifying instruction
(4) Execute until an overflow condition exists
(5) Any combination of the above

A permissive memory area may be specified to change the execution termination by
memory-modifier instructions. Thus, the operator can prohibit data storage outside a
selected program area. When a terminator is encountered, the described listing is
produced and the options are again available.

Although breakpoints are not necessary for execution, they are necessary to termi-
nate actual execution of the operator's program. These breakpoints are used to trans-
fer program control from the operator's program to the debug program. Debug com-
mands are available to insert and delete breakpoints and to transfer control back to the
operator's program. Control can be transferred from the debug program to the opera-
tor's program either directly or through a preset initial-condition program.

A debug routine is used to build on-line and execute subroutines within the debug
program. These subroutines can be used to supply initial conditions for control trans-
fers o r to structure additional debug routines as desired by the operator.

7

PROGRAM DESCRIPTION

This section provides background information for understanding debug command
operation. The debug commands are described in the next section. The various debug
routines are described in detail in the appendix.

Command Structure

The debug program begins with the command structure. Command characters are
deciphered here, and the appropriate command routine is entered from this structure.
Most returns, on completion of command execution, and most error returns are made
to the command struture. The logic is shown in figure 1. The command structure al-
lows the operator to specify INFORM commands as well as debug commands. The
INFORM commands are described in reference 1 and are designated by using nonalpha-
numeric keyboard characters. Debug commands are specified by using control-
alphanumeric characters. Each command character is assigned a subroutine name.
When the operator specifies a command character, the corresponding command sub-
routine is determined and program control is transferred to this subroutine.

Since all command characters are assigned subroutine names, unwanted commands
must be satisfied with returns to the command structure when loading the program.
The operator can therefore tailor an INilRM-debug program to suit a particular need
during the program-loading process.

A s indicated i n figure 1, command operands can be prespecified in terms of a
name. Prespecified operands are used for INFORM commands only. This feature is
useful for debug commands, however, in that the INFORM name table may be refer-
enced by the debug address specification routines. The INFORM names differ from de-
bug names in that scale factors as well as addresses may be assigned to the names.
These statistics are assigned in the command structure. Debug name tables are filled
during execution of a particular command.

Name Assignments

The operator can assign names to any memory location. A name can have as many
as five alphanumeric characters. Each character is packed in truncated ASCII (six
binary bits per character) into two memory words. Figure 2 illustrates the method
used. The most significant 2; characters are packed into the primary name word, and
the least significant 2; characters are packed into the secondary name word. Parallel
tables are used to contain the primary and secondary name words. A third parallel
table is used to hold the address assignment of the name.

8

Figure 3 illustrates the structure of the name tables for debug names. Because
multiple sequential tables are allowed for debug names, the operator can assign a list
of names that correspond. to the source listing of each program to be debugged. The
first location of each primary-name-word table is se t to zero to indicate the start of a
new name list. The first location of each secondary-name-word table is used to specify
the number of names in the name list. The first location of each address table contains
the relocation base of the program, which is determined during program loading.

Address Formats

Addressing is used to specify operands for the debug commands and to satisfy the
address requirements of the debug assembler. Several format options are available to
the operator through address delimiters and postaddress delimiters.

An address delimiter may be specified instead of a name. Allowable address de-
limiters are given in table I. Delimiters "APOSTROPHE" and ' 1 / 1 1 must be directly
followed by an octal address. Delimiters ' 1 * ' 1 and "SPACE" allow the first address
counter to be referenced as an address. Delimiters 1 1 $ 1 1 and ":') may only be used for
assembler addresses (not for command operands) and must be followed by a decimal
statement number. With the exception of the "SPACE" delimiter, all address delimi-
ters require entry of a postaddress delimiter.

After the initial address is determined, the postaddress delimiter is interrogated.
These delimiters are given in table 11. Delimiters t r + r r and "-" of table I1 a re used for
address stringing. An address string consists of an initial address entry followed by
any number of octal o r decimal numbers o r the ASCII "B" character separated by the

o r "-(' delimiters. Specifying B in the address string causes an external bias
address (set through an INFORM command) to be inserted in the string.

The I t , delimiter is used to specify assembler address indexing and is prohibited
for command operands. This delimiter must be directly followed by the "SPACE"
postaddress delimiter.

Failure to enter a proper address or postaddress delimiter will cause an error
message, followed by an error return, to be issued. Failure to specify a name that
exists in the name table specified in the address initialization routines will also result in
an error message and an error return. One exception to this occurs if the name is ter-
minated with the ASCII I f . I ' delimiter. In this case, the name is assumed to be unique,
and all debug name tables are searched. If the name is not located, the INFORM name
table is searched. If it is still not located, an error message and error re turn are is-
sued. If the name is found, the name table containing that name is determined and con-
trol returns to the operator entry point. The operator canthen specify a name contained
in this new name table. In this way, access is allowed to any name in any name table.

9

I I I I 111111 I

Debug Assembler

The debug assembler is used in all debug commands requiring on-line instruction
coding. The sequenced operation requires source-statement input in a format like that
used in the regular machine assembler (location, instruction, and address fields).
When assembly is completed, a source listing is provided for operator verification.

The location field is five spaces long. It is used to structure the statement entries
according to decimal statement numbers as well as to define previously undefined ad-
dresses. Location-field entries are also used to signal completion of source-statement
entry, to delete statements, and to abort statement entry by a return to the debug com-
mand structure. Allowable location-field entries are given in table 111. Decimal in-
tegers n are used to specify the location of a source statement within the source-
statement structure. Thus the operator can easily modify previous statement entries.
All statement entries must be sequentially numbered, starting with zero.

Previously undefined address-field entries must be defined before completion of
source-statement entry is signaled. They are defined by referencing the undefined ad-
dress $n in the location field. The location-field entry number immediately following
this reference replaces the undefined address as it occurs in all previous instruction
entries.

The maximum source-statement number (limited by the size of the assembler buffer
to 64) is saved in an instruction counter and used to specify the number of memory loca-
tions used by the operator's program. This number may be modified by the "MI' corn-
mand in the locationfield. The ,'"' command is used to specify the completion of a
source-statement entry, and the "R" command is used to abort the source-statement
entry.

After a source-statement number is entered in the location field, the program
spaces the input device to the instruction field. The instruction field is six spaces long.
Allowable instruction-field entries are given in table W . Any machine instruction
mnemonic or any posudo-op mnemonic given in table V is allowed. Each ASCII charac-
ter of a mnemonic entry is truncated to five binary bits. The alphabet is thus trans-
lated into binary numbers ranging from 00001 for A to 11010 for Z. The ASCII num-
ber characters from 1 to 4 are translated by subtracting octal 226 from the ASCII code.
These numbers are then binary coded as 11011 to 11110. Since each mnemonic is three
characters long, it can be represented by a single 16-bit word (see ref. 2 for HDC-601
instruction mnemonics).

Indirect addressing is specified by appending the ASCII "*" character to the in-
struction mnemonic. This character signals the end of the instruction-field entry. If
indirect addressing is not desired, the ASCII "SPACE" character is used to terminate

10

the mnemonic and to signal the end of the instruction-field entry. The input device is
then spaced to the address field if an instruction operand is required.

Assembler addresses are available to reference as yet undefined addresses or
source-statement numbers. These are 'l$nr' and ":n, 'I respectively, where n is a
decimal integer as defined for the location field.

The pseudo-operations of table V allow the operator to specify data formats and
direct-address constants and to reserve block-storage locations. Each pseudo-op re-
quires an address-field entry. Octal integer data can be entered in unsigned 6-digit
format (negative numbers are represented in two's complement). Decimal data can be
scaled by terminating the entry with a ASCII tl/ll character followed by a scale factor
(see the section Scaling). An ASCII data entry must be preceded by a decimal number
that indicates the number of locations it will consume (two characters per location).
Any locations not filled by the operator will be filled with "SPACE" characters. Indi-
rect addressing and indexing are allowed. For block storage, the operator specifies
the decimal number of locations to be reserved.

When the operator signals completion of source-statement entry ' , \ I 1 , the source
program is assembled. The source program, as well as all intersector reference re-
quirements, is listed for operator verification. The listing format for memory refer-
ence instructions is given in figure 4. The listing format for other types of instruc-
tions and pseudo-operations is similar, with the exception of the address field. If the
operator is satisfied, the resulting machine-coded object program is transferred from
the assembler buffer to permanent storage. If the listing is unsatisfactory, the opera-
tor can either edit the source program or cancel the job.

Scaling

The operator can designate scale factors to be assigned to input o r output data.
This feature is available for data display or in conjunction with any of the assembler's
decimal pseudo-operations (DEC, FPC, and DPC). Scale factors can be specified by a
number of means, as given in table VI: Ratios giving the number of engineering units
per machine unit may be specified directly. A ratio may also be specified to be that en-
tered for an INFORM name. A scale factor, representing the ratio of voltage to ma-
chine units of the analog-to-digital converter in the control system, is stored internally
in the program and can be referenced for any variable. Binary scaling is permitted.
The ratio of engineering to machine units for binary scaling is 2m/32 768, where nn
is a decimal number specified by the operator. It is also possible to default the scale
factor to the last entered value.

11

DEBUG COMMANDS

This section describes the command routines and their use. Eleven commands are
available in the debug program. The command structure can be modified to add or de-
lete commands according to need. Command routines are entered by using ASCII con-
trol characters (represented by underscoring the corresponding alphabet character in
all tables and figures). Table VII lists the debug command routines, their entry char-
acters, and their descriptions and references their functional diagrams (given in figs.
17 to 40).

Completion of each command routine (except RDEBUG, to be described) returns
program control to the command structure (fig. 17). This is indicated by the ASCII
11,” character. In many cases (particularly in specifying command operands), opera-

tor error also causes a return to the command structure. Other errors may simply
cause a return to the start of the current entry. The operator can intentionally cause
an error return to the command structure at any time by using the ASCII ’’#” charac-
ter. One other special error character is used in the program: the ASCII “RUB OUT”
character. This character is used in name specification to cancel previously input
name characters and to start again. Debug error messages, their descriptions, and
their consequences are summarized in table VIII.

Figure 5 presents an assembly-language program to be debugged and illustrates
the use of each debug command. It is not intended for any purpose other than illustra-
tion. The figure gives the location in memory of each instruction o r data word, the oc-
tal contents of the location, the name assigned to the location if any, the instruction or
pseudo-op mnemonic as defined in reference 2, and the address-field reference. The
purpose of each instruction is stated. The program consists of a main program start-
ing at X1 and a subroutine starting at Y1. The X1 program has a sector base area
starting at ‘14735. In this area, one intersector reference location is used and two lo-
cations are available for use. The Y1 subroutine is located in a different sector
(Y5000) than the X1 program and has no sector base area. The subroutine name YYY
and its starting location Y1 are equivalent and refer to the same location.

Each command routine is described and illustrated in this section. The sequencing
steps and options for each command routine are also given in terms of required opera-
tor entries and terminations. The program’s response, if any, to each entry is indi-
cated. Certain sequencing steps are common to many of the command routines. These
steps are used for address specification, scale-factor specification, and on-line assem-
bly. Sequencing for these operations is given in tables E, X, and XI, respectively.

12

Initialization Command - YDEBUG

With the command routine YDEBUG the operator can reserve memory locations to
contain

(1) INFORM name and statistics tables
(2) Debug name and address tables
(3) On-line program additions
(4) Debug assembler buffer

In addition, the operator can protect a memory area from violation during program
execution when using XDEBUG. This memory area usually is that containing the debug
program but can be any selected memory area.

The sequencing and use of this command are given in figure 6. On entry the opera-
tor must specify the desired area of initialization (INFORM, debug, or protect). Sepa-
rate entry must be made for each initialization area.

INFORM initialization requires that the start of its tables (e. g. , 16000) and the
number of names allowed (e.g., ‘24) be specified. Since tables must be reserved for
the primary and secondary name words and the address and scale-factor (two words)
assignments, the actual number of machine locations reserved for INFORM name speci-
fication is five times the number of names to be entered plus overhead. After specifi-
cation, the next available memory location (e. g . , * 16426) is displayed for the operator.

Debug initialization requires that the program addition area (e. g. , -16426) be spec-
ified. This area must be contained within a single sector. The assembler buffer must
immediately follow the program addition area (e. g. , -16700). Therefore, specification
of this buffer’s location limits the size of the program addition area. The assembler
buffer is prespecified to be 64 locations long. Debug name table initialization requires
that both the first location (e. g., -17000) and the numberof names to be entered
(e. g., ‘24) be specified. The actual number of locations reserved for debug names is
three times the number of names to be entered. After specification, the next available
memory location (e.g. , -17074) is displayed for the operator.

Protect initialization requires that the initial and final locations of the area to be
protected (e.g., a 15000 + -15003) be specified. If these locations are not initialized,
no area will be protected.

Source-Name Input Command - UDEBUG

With the command routine UDEBUG the operator can specify debug source-name
and address assignments. The sequencing and use of this command are given in fig-
ure 7. Names assigned to different programs or subroutines must be specified on sep-
arate entries into UDEBUG. On entry the operator must specify the relocation base of

13

the program (e. g., - 14740 for program XXX and- 15000 for program YYY). Name and
address assignments can then be made. In general, names should correspond to the
names in the operator's source program, with at least one name being unique to this
program (e. g. , the program name XXX) . This allows a specific name table to be ref-
erenced when more than one program is being debugged. More than one name can be
assigned to a location (e. g., XXX and XI assigned to -14740). All name entries are
terminated with a space.

The address entry must be made in octal and preceded by a zero. Any characters,
except ItW, between the name terminator and the start of the address will be ignored.
Relocatable addresses are terminated by a "SPACE" or a "CARRIAGE RETURN.
These are stored directly in the address table (e. g., - 00 represents location -14740).
Absolute addresses must be terminated by !'A. The relocation base is subtracted
from the entry before storage (e. g., - 014775A is stored as - 35).

Completion of the name and address entries is signaled by a "W" in the address
field. Any name may precede this entry. This termination corresponds to the source-
name-table termination of the HDC-601 assembler listing "0000 WARNING OR ERROR
FLAGS"). When the name and address assignments are completed, the accumulated
number of locations used in the primary-name-table area is displayed in octal. This
includes the initial location of each table used for table statistics.

At any time before entering a name, the operator may change the input device num-
ber by starting a line with ' I ; character. This was not done in the example since all
names were entered from a single device. The command routine UDEBUG will ignore
any line beginning with '(*I1 and ending with a "CARRIAGE RETURN. This allows for
the insertion of comments.

Sector Base Statistics Command - BDEBUG

With the command routine BDEBUG the operator can initialize the sector base
tables used by the debug assembler to form intersector references. The sequencing
and use of this command are given in figure 8. For each sector used by the programs
to be debugged, the operator should describe any area used for intersector referencing
by the loader. This allows the assembler to use existing references and thereby opti-
mize memory usage. I€ additional locations adjacent to this area are available for new
references, this should also be indicated. As a minimum, an area in sector zero
should be set aside for the creation of intersector references. This sector is used as
the default sector if no other area is available.

Ninety-six locations are reserved in BDEBUG to contain the base sector statistics.
Three locations per sector are used to store the following information:

14

(1) The first location containing an intersector reference (e. g. , ' 14735)
(2) The first location available for a new reference (e. g. , 14736)
(3) The last location available for a new reference (e. g., '147 37)

This permits sector base tables to be initialized for all sectors contained in a 16K com-
puter. Initialization must be in octal and be preceded by the octal sector number
(e.g., '24). All sector base statistics can be specified on a single entry to BDEBUG.
Failure to specify for any sector indicates that no sector base area is available in that
sector. A return to the command structure is made by specifying "R" in place of a
sector number.

Display Command - PDEBUG

With command routine PDEBUG the operator can selectively display the contents of
the memory o r the pseudoregisters. The sequencing and use of this command are given
in figure 9. For illustration, the names "NL" and "PH" were defined, by using
INFORM (ref. l), to have the scale factors 2000 rpm/32 000 machine units and 10 psi/
32 000 machine units, respectively.

On entry the operator specifies the initial (and final if a block) location of memory
to be displayed or indicates the register to be displayed. He then enters a format num-
ber to indicate the type of display desired. Allowable format numbers are given in
table XII. Format numbers 6 and 7 are available for memory display only. The inter-
pretation of format 7 depends on the display mode selected. Two display modes are
available: The print mode (selected by terminating the format number with a "SPACE")
simply displays the contents of the selected cell or cells in the chosen format; the list
mode (selected by terminating the format number with a "CARRIAGE RETURN") lists
the selected cell or cells as illustrated in figure 4.

In the example (fig. 9), pseudoregisters A and B are first printed in octal. This is
followed by scaled display of each register (initiated by "/") using direct scale-factor
specification, indirect specification by referencing first "NL" and then "PH, and
voltage scale-factor specification "V." Two examples of using binary scaling of the
pseudoregister AREG are then given. Finally, the pseudoregister AREG is displayed in
double-precision format. This causes the pseudoregisters AREG and BREG to be con-
sidered as a signed, 30-bit, double-precision integer. The attempt to display the
pseudoregister BREG in double-precision format is not allowed and produces an error .
Any double-precision referencing of an odd memory address also produces an error .

The remainder of the example illustrates memory display using all format numbers
in the print mode and format number 7 in the list mode. Various types of address spe-
cification are used for illustration. Location M5 is displayed by first pointing to a
unique name in program XXX and then the specific name M5. Once the current table

indicator has been se t by this process, further specification of XXX names need not be
prefixed by a unique name. Also after the first list mode example, the first address
counter (pseudo program counter) is the same as the last address counter, namely
X2-1. The next list mode example using first address counter +1 displays location X2.

An additional feature of PDEBUG is presented in the example. If instead of termi-
nating a format number with a ''SPACE" or I'CARRIAGE RETURN" an ASCII !'=I1 char-
acter is specified, the net result of address stringing is printed.

Modification Command - CDEBUG

With the command routine CDEBUG the operator can change the contents of mem-
ory o r of any pseudoregister. The sequencing and use of this command are given in
figure 10.

On entry, the first and last address counters are specified for memory modifica-
tions. The first address counter contains the first memory location to be changed. The
last address counter need not be specified. If it is, it will not limit the number of mem-
ory locations that can be changed. This limit (64) is set by the length of the assembler
buffer. However, if a last address is specified and the number of locations changed by
the operator is less than that indicated by the difference between the last and first ad-
dress counters, the remaining locations will be filled with the last assembler entry.
Thus sections of memory can be filled with a constant value. The example illustrates
scaled-data entry into the five locations reserved for SDAT. Since only four locations
are entered, the fifth location is loaded with the fourth entry. These changes were in-
corporated into the program response to "GO ?I1).

If on entry, a pseudoregister change is specified, more than a single register can
be modified (note second CDEBUG entry in example). The pseudoregisters are stored
in the debug program in the following order: AREG, BREG, XREG, and KEYS (in this
case * 35622 to * 35625, respectively). Therefore, if an AREG change i s indicated, all
four registers can be modified by four assembler statements. If a location beyond the
pseudoregister KEYS will be modified, the operator is advised and the modification
command is aborted.

The third entry into CDEBUG illustrates the assembler's handling of intersector
references. The intersector reference for Y1 already existed in the sector base area
of program X I . The intersector reference for Y2+1 did not exist and was therefore
formed by the assembler (note listing of location * 14736). These modifications were
not incorporated into the program CrN" response to "GO ?I1). The command was abor-
ted by specifying r'R'' in the location field.

16

Program Addition Command - ADEBUG

With the command routine ADEBUG the operator can insert additional statements
into his program. The sequencing and use of this command are given in figure 11.

Specification of the first address counter indicates the location of the insertion. Al l
additions are stored in the program addition area specified during initialization. If the
original content of the insertion address is to be maintained, it must be included in the
additions. (In the example listing, a jump through an intersector reference, inserted at
X2-3 ('14750), is used to link the addition to the program.) The return from the addi-
tion to the program must be included in the addition by the operator.

Subroutine Specification and Execution Command - VDEBUG

The command routine VDEBUG is used for on-line structuring and execution of sub-
routines. These subroutines can be used for any purpose, including the on-line building
of additional debug command routines. The sequencing and use of this command are
given in figure 12 .

On entry the first address counter specifies the location of the subroutine. The op-
erator must then specify whether a subroutine is to be structured ("I") o r executed
(f IXf t) or if a return to the command structure is desired (? ? R f T) . After subroutine
structuring is completed, this specification is again required.

The usage example illustrates the structuring and execution of a routine to output
the ASCII data contained in location ADAT to the teletype. The subroutine is placed
starting at location Y2+1 ('15004). The statement specification illustrates the use of
statement number (" :) I) and undefined address referencing ("$") in the assembler. The
first location is reserved for the return address (a rrBSS'' entry results in a llBSZ" re-
sponse). The return from the subroutine is made in statement 13. Sector 0 is used for
intersector references. Sector 15 base tables were not initialized in BDEBUG.

After the operator verifies the listing, he signals transfer of the subroutine to its
permanent location response to lrGO?"). He then elects to execute the routine
('lX'l). The routine is executed and the characters "AB" printed. The next entry to
VUEBUG illustrates execution without subroutine structuring.

Program Execution Command - XDEBUG

The command routine XDEBUG is used to execute instructions contained in the pro-
gram to be debugged. The sequencing and use of this command are given in figure 13.
On entry the first and last address counters are initialized. The first address counter

17

specifies the first location to be executed. The last address counter is an absolute exe-
cution terminator. Any instruction encountered that violates the area protected in
YDEBUG will also terminate.

Other execution terminators a re optionally available to the operator. He can ter-
minate execution when an instruction is encountered that

(1) Modifies memory outside a specified override area ("MIf)
(2) Modifies the program counter (jump and call instructions) ("P")
(3) Causes the machine overflow latch to be se t ("0")

These terminators must be set before each execution command. Any combination of
the preceding can be specified. All terminators are reset whenever execution is ter-
minated and on entry to XDEBUG.

Commands are available within XDEBUG to reset the machine overflow latch ("C")
and to specify a memory override area ("A") used in conjunction with the memory-
modification terminator. With this override area, a memory-modifying instruction can
be executed even through the terminator is set, as long as the effective address of the
instruction falls within the override area. If no override area is desired, a "-" is en-
tered after the "A" command instead of address specification.

Two execution modes a re available in XDEBUG:
(1) Single-instruction execution
(2) Execution to termination

The example illustrates the use of the terminators and execution modes. The first
entry to XDEBUG demonstrates the single-instruction execution mode. Execution is
specified from X1 through X2-7. The listing of the first instruction is then provided for
the operator. It gives the status of the pseudoregisters (AREG =. 37200). The KEYS
are displayed with the four most significant bits in binary and the last six bits in octal.
The remaining bits of the KEYS are meaningless. After the listing, the operator indi-
cates single-instruction execution by the "SPACE" character. Execution terminators
cannot be used in the single-instruction execution mode. The first instruction (CRA -
clear AREG) is executed and the listing of the next instruction is provided. In this case
it is a memory reference instruction (STA - store AREG) and therefore the effective ad-
dress is also displayed (. 14757). Since indexing o r indirect referencing is not speci-
fied in this instruction, the effective address is the same as the direct address. The
contents of the direct address before execution are also provided in the listing (fig. 4).
The single-instruction execution mode is continued until a return to the command struc-
ture is specified ("R").

The second entry to XDEBUG illustrates the use of terminators. Initially, sense
switch 1 is set. Execution from and to statement X1 is specified (i. e. , the first and
last address counters are set to Xl). After the listing of the first instruction, the oper-
ator elects execution to the first program-counter modifier (I r P t ' I) . This instruction

18

is encountered at '14750. The operator then elects to set the memory override area
to be the single location YHLD. He then specifies execution to the first memory modi-
fier (I'M t If). This instruction is encountered at location * 14747. (Incrementing the index
register modifies location 0 .) If he then elects to execute the program without optional
termination (fft'l), he encounters a protect violation at '14753, '15001, and '15002. If
he chooses to ignore these violations, he continues execution until he reaches the loca-
tion specified by the contents of the last address counter (- 14740). Sense switch l is
then reset so that the instruction in location * 14752 (set machine overflow latch) is en-
countered. Execution to overflow is specified ("Ot"). Execution is, therefore, ter-
minated a t ' 14752 and the next instruction is listed. The operator next resets the ma-
chine overflow latch (l l C 1 l) and continues execution (" t") until a protect violation is
about to occur. He then returns to the command structure ("R").

Breakpoint Command - SDEBUG

With the command routine SDEBUG the operator can insert and delete breakpoints
in the program to be debugged, Breakpoints identify the occurrence of particular pro-
gram conditions. The sequencing of this command is given in figure 14. The usage ex-
ample for this command is discussed in the following section (Return Command -
RDE BUG).

The first address counter specifies breakpoint location. The operator then speci-
fies either rfS" to set a breakpoint o r "R" to restore the original contents of the break-
point. Five breakpoints can be inserted at any one time. Breakpoint locations and
their original contents are stored in parallel address and content buffers contained in
SDEBUG.

Inserting a breakpoint replaces the program instruction with a call instruction
made to a reentry location in SDEBUG. The original instruction is saved. The call is
made by using memory location - 2 0 as an intersector reference. Program control is
then returned to the command structure. When a breakpoint is encountered and
SDEBUG is reentered, all priority interrupts are inhibited, the registers are stored in
their pseudolocations, and the operator is advised of the encounter.

Return Corn Inand - ItDE BUG

The conlmand routine IZDEBUG transfers control from the debug program to any
other program in the machinc. The sequencing and use of this command are given in
figure 15.

19

1

Returns from the debug program can be made directly or through an initial condi-
tion program. On entry the operator specifies the return location by setting the first
address counter and the initial-condition routine by setting the last address counter. If
the last address counter is not set, no initial-condition routine is executed. The return
begins when the address-counter specification is completed.

The usage example illustrates the use of both RDEBUG and SDEBUG. A breakpoint
is set at location * 14742. The original content of this location is displayed in octal, and
control is returned to the command structure. The listing of 14742 shows the call
through intersector reference location -20, which replaces the original content. The
content of * 20 (. 25504) is the reentry location in SDEBUG. Command routine RDEBUG
is then entered from the command structure, and a direct return from the debug pro-
gram is specified. In program X1 the breakpoint at -14742 is encountered and indicated
to the operator. Control then returns to the command structure. The operator deletes
the breakpoint by using SDEBUG, and. 14742 is again listed, showing its original con-
tents to be restored. Command routine RDEBUG is again entered, and this time an
initial-condition program is specified to be that subroutine programmed in the VDEBUG
example. The return location is set to be X1. A call to the initial-condition routine is
made (‘!ABr1 printed), and control is transferred to location XI.

Transfer Command - TDEBUG

The command routine TDEBUG transfers the contents of a block of memory to
another block of memory o r to an output device, fills memory from an input device, and
verifies all input-output transfers. The sequencing and use of this command are given
in figure 16.

On entry the address counters are initialized. These counters specify the first
(e. g . , XXX. SDAT) and last SDAT+4) addresses of the memory block to be trans-
ferred or verified. In the example, the first TDEBUG entry illustrates a memory-to-
memory transfer. After the memory block and transfer type (“M”) are specified, the
first location to receive the transfer is specified (* 15040). The transfer mask, which
is used to delete bits from the transferred memory wmd, must then be specified
(. 177777 for no bit modification). Any bit not set to 1 in the mask is deleted. After
the transfer mask is specified, the memory transfer is made. The display command is
then used to verify the transfer.

The next three entries to TDEBUG demonstrate input-output transfers and verifica-
tion. In each case the input-output device number must be specified.

20

I

CONCLUSIONS

The debug program described herein offers a high level of operator-computer com-
munication to ease the debugging process of complex assembly-language control pro-
grams. Information supplied by the computer's assembler and loader and pertinent
program information supplied by the operator are used to provide communication in an
easily understandable format. Communication is done through the use of identifiable
names, flexible addressing, and on-line progran assembly capabilities.

Eleven debug commands provide the operator with sufficient options to simplify the
execution, analysis, and modification of his program and reduce program turnaround
time. The program execution command contains instruction diagnostics to reduce the
possibility of program destruction by program errors. Displays are available to help
the operator analyze the program and to advise him of his status within the debug pro-
gram. Program modifications and additions are easily incorporated on line by an ex-
tensive debug assembler. The capability to structure subroutines to aid in the debug
process is also offered.

Most of the bookkeeping required in the debug process is handled by the debug pro-
gram. Hard copy of the debug process is easily obtained by using the display routines.
Flexibility in input-output device selection offers a versatile means of information
transfer.

The command structure of the debug program allows the programmer to insert ad-
ditional debug commands. The program is compatible with the data-analysis-and-
display program INFORM. The ability to selectively incorporate INFORM and debug
commands allows the structuring of debug and analysis programs that are tailored to
meet the specific needs of the programmer.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 20, 1978,
505-05.

21

APPENDIX - DESCRIPTION OF DEBUG PROGRAM

Diagrams illustrating the structure of the DEBUG program and the mechanics of its
various routines are presented in this appendix. Certain parts (particularly the on-line
assembler) are necessarily peculiar to the HDC-601 computer. Functional statements
are used throughout so that the program can be easily adapted to other computers.

The basic input-output routines used for operator command and display a re not
diagrammed since they are generally straightforward and extremely machine dependent.
Other routines contained in INFORM are also omitted except where necessary to the
understandmg of the debug program. The INFORM routines that are referenced but not
diagrammed a re

TTYR - general-purpose number input
TTYR2 - same as TTYR but with the first character prespecified by the pro-
gram

INPT - character input
LOAD - general-purpose loader
VERIFY - general-purpose verifier
PUNCH - general-purpose binary dump routine
C$24 - floating-point to double-precision integer conversion

These routines are described in reference 1.
The nomenclature used in the diagrams is a s follows:
(1) Subroutine names a re given in parentheses (e. g., (NAME))
(2) Location names are given in brackets (e. g., [CSUB])
(3) ASCII characters are given in quotation marks (e. g., "A")
(4) ASCII control characters are understored (e.g., 4

The functional statements are boxed. If more than one result can occur from execution
of a statement, the results are indicated on linkage lines emanating from the statement
box. All program messages are omitted from the functional diagrams for simplicity.

The command structure, given in figure 1 7 , shows the debug command subroutines.
Some of the INFORM command subroutines are also shown. See reference 1 for a com-
plete description of INFORM'S capabilities. Figures 18 to 28 are functional diagrams
of the debug command subroutines. These routines are straightforward and are dis-
cussed in detail in the main body of this report. Appendix figures 29 to 39 a re function-
al diagrams of utility routines required to support many of the debug command sub-
routines.

Figure 29 illustrates the structure of the on-line assembler. It consists of three
parts:

(1) PTCH is used for location-field entries, to input assembler commands, and to
sequence assembler events.

22

(2) CMDI is used for instruction- and address-field entries.
(3) ASEM is used to form the machine coding (object program) corresponding to the

source-field entries.
These assembler routines require the support of additional subroutines: LIST (fig. 30),
FNDI (fig. 31), FNDM (fig. 31), GSFR (fig. 32), SBSE (fig. 33), and TRAN (fig. 34).

In 0 1 , two special buffers (with 64 locations each) hold the instruction- and
address-field entries. If the instruction is a memory-reference instruction, the in-
struction op-code is stored in the instruction buffer and the positive address is stored
in the address buffer. If the address is a location-field number, the second least sig-
nificant bit (bit 15) of the instruction word is set. If the address is undefined, the least
significant bit (bit 16) is set. Shift instructions have the op-code stored in the instruc-
tion buffer and the negative shift count stored in the address buffer. This number is al-
ways greater than -177700 (-64). All other machine instructions and pseudo-op oper-
ands a re self-contained within the instruction word. Special codes are used to distin-
guish these instructions for the assembler and listing programs. These codes are given
in table XIII.

Subroutine FNDI contains the instruction mnemonic words and their corresponding
op-codes in parallel tables. This routine is used to obtain op-codes from mnemonic
specification by CMDI. This routine also returns the instruction type (memory refer-
ence, shift, etc .) for address-field determinations.

Subroutine FNDM is the inverse of FNDI. A mnemonic is returned that corre-
sponds to a specified instruction. The instruction type is indicated. This routine is
used in the source listing procedure.

When the operator signals completion of source-statement entry, control is trans-
ferred to subroutine ASEM for assembly. The address buffer is interrogated to deter-
mine the instruction type. If it is a shift instruction (-64<ADDRESS<O), the shift count
is combined with the op-code and stored in the corresponding assembler buffer location.
If it is a memory-reference instruction (OLADDRESS), intersector referencing is com-
puted by using SBSE and sector base statistics supplied by BDEBUG and modified by
TRAN. If external indirect reference generation is required, the instruction counter is
incremented and the external address is added to the end of the instruction buffer. The
original address is appended by the indirect and index modifier bits as set in the origi-
nal instruction word and stored in the corresponding assembler buffer location. Ad-
dress code 8 (table XIII) is stored in the corresponding address buffer location for in-
terrogation by the transfer routine TRAN. The original address buffer location is mod-
ified to contain the external address. The index modifier bit of the original instruction
word is reset, and the indirect modifier bit is set. The instruction is then reassembled.
Memory reference instructions not requiring intersector referencing are combined with
the corresponding address buffer word and stored in the assembler buffer.

23

I

When assembly is completed, PTCH lists the source program by using the LIST
subroutine, as well as listing all intersector reference requirements for operator veri-
fication. Verification is indicated in TRAN. If the operator is satisfied, he signals for
program transfer from the assembler buffer to permanent storage. Routine TRAN does
the transfer and also modifies external addresses (COD8) as required for intersector
referencing. TRAN modifies the sector base statistics (see section Sector Base Sta-
tistics Command - BDEBUG) to reflect the addition of intersector references.

With the scaling routine GSFR the operator can designate scale factors to be as-
signed to input or output data. This routine is used for assembler decimal data entry
and also in the PDEBUG command routine.

Figures 35 to 40 illustrate the debug address and name specification and handling
routines. Addressing is used to specify operands for the debug commands and to sat-
isfy the address requirements of the debug assembler.

Subroutine CMMP (fig. 35) is used for command operand specification. It initial-
izes the first and last address counters with addresses obtained through GETN (de-
scribed below). If only a single operand is specified, the address counters are set the
same. Operator errors leave the address counters unaffected, and an error return
from CMMP is made. Correct operand specification causes the current program indi-
cator to be computed through CSET (fig. 36).

In subroutine CSET, the contents of the first address counter are compared with
the relocation base of the various add2ess tables. The maximum base value that is less
than the contents of the first address counter is determined, and the address of the cor-
responding primary-name table is stored in a location reserved for the current pro-
gram indicator.

Subroutines GETN and ADRS (fig. 37) initialize the address specification subroutine
GETA. Subroutine GETN specifies the debug name table; subroutine ADRS specifies
the INFORM name table and prohibits address indexing and the special assembler ad-
dress formats. Subroutine CMCK (fig. 37) flags special assembler address formats as
e r rors when warranted.

Subroutine GETA (fig. 38) is a general-purpose operator address specification rou-
tine. It is used for all addressing in both INFORM and the debug program. Initializa-
tion and entry must be made through GETN or ADRS. Certain implicit initializations
are also required. The operator is allowed to reference a special external-bias ad-
dress set through an INFORM command. Referencing of this address is allowed only
after the address stringing delimiters (see below). The first address counter is used
by address displacement delimiters (see below) as the refermce address. It is gener-
ally set when specifying command operands in CMMP but may also be set in the
ADEBUG, PDEBUG, and XDEBUG command routines (see the section DEBUG
COMMANDS).

24

I

On entry to GETA, a versatile address input format is available to the operator
through the use of address delimiters and postaddress delimiters. The NAME subrou-
tine (fig. 39) specifies either a name or an address delimiter. If a name is entered,
the name table specified by GETN or ADRS is searched. If the name is found, the cor-
responding address is determined. The termination character of the name entry speci-
fies the postaddress delimiter.

Subroutine NAME is used for operator name specification. The primary and sec-
ondary name words are formed and made common to other routines. Any character
other than an alphanumeric, a delimiter, will terminate the name entry. The termi-
nating character is tested to insure proper name entry in the calling routines. If no
name is entered, the name words are filled with "SPACE" characters, and the delimi-
ter entered is treated as a command by the calling routines. This subroutine is used
to input most INFORM and debug names.

Subroutine NFIN (fig. 40) locates a name assigned to a specified address. All
name tables are searched. If the address is located, the corresponding name words
are returned. If the address cannot be located, NFIN returns name words filled with
"SPACE" characters.

Subroutine FIND (fig. 40) obtains the displacement of a specified name from the
start of a name table. On entry the table to be searched and the displacement between
the primary and secondary name tables must be specified (since FIND can interrogate
INFORM tables also). An er ror exit is used if the name cannot be found. The dis-
placement is used by the calling routine to determine the address assigned to the name.

25

REFERENCES

1. Cwynar, David S . : INFORM - An Interactive Data Collection and Display Program
with Debugging Capability. NASA TP-1424, 1979.

2. HDC-601 Digital Computer Programmers Reference Manual. Honeywell Aerospace
Division, St. Petersburg, Flay Apr. 197 I.

3. HDC-601 Digital Computer Software Systems Description. Honeywell Aerospace
Division, St. Petersburg, Fla., Aug. 1972.

26

I

TABLE I. - ALLOWABLE ADDRESS DELIMITERS

Address
delimiter

Description

APOSTROPHE Indicates that absolute octal entry follows
______" ~

*

$

Indicates that relative octal entry follows /
Specifies first address counter as entry

Indicates that an undefined assembler address follows
SPACE Specifies first address counter plus 1 as entry

Indicates that a defined assembler address follows

TABLE 11. - ALLOWABLE POSTADDRESS DELIMITERS

Postaddress Description
delimiter

+ Indicates address addition
Indicates address subtraction

Y Assembler address indexing (must be followed by SPACE)

1 SPACE Signals completion of address entry
Specifies a unique name

TABLE Dl. - ALLOWABLE ASSEMBLER LOCATION-FIELD

ENTRIES

Location- Description
field
entry

n Indicates location of following instruction in operators
program (n = decimal integer, 0 5 n 5 63)

address, $n (n = decimal integer, 0 5 n 5 63)
$n Indicates that following location defines undefined

\ Indicates completion of operator's instruction entries
M

Returns to INFDRM/debug command structure R
Allows operator to view and modify the location counter

27

TABLE VI. - ALLOWABLE SCALE-FACTOR ENTRIES

Scale-factor
entry

Description

-

Directly specifies ratio of engineering unit (E. U.) to
machine unit (M. U.)

Specifies scale factor assigned to a name in INFORM

Specifies voltage scaling (10 volts/32 000 M. LJ.)
Defaults to last entered scale factor
Specifies binary scaling, where (nn) represents any

table

. .

+ or - integer. (2m E.U./32 768 M . U .)

TABLE V. - ALLOWABLE PSEUDO-OPERATION

Mnemonic

OCT
DEC
FPC
BCI
DPC
DAC
BSS
BSZ

MNEMONICS
~~ - - "_

Address-field entry
~~ ~

Octal integer data
Decimal integer data
Decimal floating-point data
ASCII data
Decimal double-precision integer data
Direct-address constant
Block-storage reservation
Block-zero storage reservation

.~

.

TABLE IV. - ALLOWABLE ASSEMBLER INSTRUCTION-FIELD ENTRIES

Instruction- Description
field
entry

APOSTROPHE Indicates entry of an instruction o r datum coded in octal
(The OCT pseudo-operation may also be used for
octal data entry.)

xxx

Specifies indirect addressing (also signals completion of *

Pseudo-operation mnemonic (where YYY is any pseudo- YYY

Instruction mnemonic (where XXX is any machine in-
struction mnemonic)

operation defined in table VIII)

instruction-field entry)
SPACE Signals completion of instruction-field entry

28

Routine

YDEBUG
UDEBUG
BDEBUG
PDEBUG
CDEBUG
ADEBUG
VDE BUG
XDEBUG
SDEBUG
RDEBUG
TDEBUG

aUndersc 01

Error message

?
X?
NOT EX

CSET

PV

OVFLON

OVFLOP

FORMAT
NO $ REF

$n

OVFLOM

OVFLOB

SPOF
$N
OVFLOA
ID-32

S?

~~

TABLE VU. - DEBUG COMMAND ROUTINES

zommand
Entry a I
- Y

28 T
27 R
26 S
25 X
24 V
23 A
22 C
21 P
20 B
19 U
18

-
-
-
-
-
-
-
-
-
-

-

Description

Initializes debug and INFORM programs
Assigns debug source names and addresses
Initializes sector base statistics
Displays memory o r register
Modifies program o r pseudoregister
Inserts additional statements into program
Specifies and executes subroutine
Executes program
Inserts or deletes breakpoint
Returns to program
Transfers memory from block to block

". ~ -

:ing denotes ASCII control character.

TABLE VIII. - DEBUG ERROR MESSAGES

Meaning

Nonrecoverable e r ror
Execution command er ror
Nonexecutable instruction encountered

in XDEBUG
Last instruction executed in XDEBUG

caused overflow latch to be set
Execution of following instruction

will cause protect violation
Overflow of debug name tables using

UDEBUG
Overflow of program addition area

using ADEBUG
Assembler format e r ro r
a e r a t o r tried to define a nonexistent

undefined address reference
3perator failed to define undefined

s e r f l o w of assembler's buffer o r
instrument buffer (64 locations)

No intersector reference locations

address reference $n

are available
Single-precision overflow
Name specification e r ro r
Specified address is negative
Indefinite indirect chain encoun-

tered in XDEBUG
SDEBUG e r ro r

Program control transfer

Command structure
XDEBUG command input and decoder
Command structure

None

None

Command structure

Debug assembler's reentry location

None

Command structure
Start of NAME
Command structure
None

Command structure

29

30

l a

Ib
I C

Id
l e

If

2a

2b
2c
2d
3

-

4

TABLE E. - SEQUENCING FOR ADDRESS-FIELD SPECIFICATION

Enter I Terminate Response

None

1

None

1
1
None

I

Go to step

1

2

1
Exit

1
1
3
Exit

-~

~

Description

Temporarily specifies name table that
.. ~

contains entry
Specifies name in specified name table
Specifies absolute octal address
Specifies relative octal address
Specifies first address counter as

address
Specifies first address counter plus 1

as address
Terminates address entry; returns to

calling program
Indicates address addition
Indicates address subtraction
Specifies address indexing
Terminates address entry; returns to

calling program

TABLE X. - SEQUENCING FOR SCALE-FACTOR SPECIFICATION

Step Enter

" """"-

l a
* l b
(Decimal)

I C v

Id +

l e

(Name) 3
(Decimal) 2
Bnn

Terminate

"""

SPACE
None

None

None

SPACE
SPACE
SPACE

Response

SF=

/
None

I

Go to steF

1

2
Exit

Exit

3

Exit
Exit
Exit

-

Description

Advises operator of scale-factor entry
~.

requirement
Specifies engineering units (numerator)
Specifies last scale-factor entry as

Specifies 10 volts/32 000 machine units
scale factor

as scale factor
Indicates use of INFORM name for spe-

Specifies 2""/32 768 as scale factor
Specifies machine units (denominator)
Uses scale factor specified for

cification

INFORM name
"

Step I Enter

l a

Ib

I C

Id
l e
2a
2b
3a
3b
3c
3d
3e

4a

R

\

M

(Decimal)
$(Decimal)
,
(Decimal)
(Octal)
(Mnemonic)

Address
4b

(Decimal) 4d
(Decimal) 4c
Address

4e
4f
5a
5b

$ (Decimal)
$(Decimal)
(Number)
(Number)

TABLE XI. - SEQUENCING FOR ON-LME ASSEMBLER

Terminate

None

None

None

SPACE
SPACE
None
SPACE
SPACE
SPACE
*
SPACE
SPACE

SPACE
9

SPACE
9

SPACE
,
SPACE
/

Response

None

Listing

output

Spaces
CRLF

1
Spaces
Spaces
Spaces
CRL F

CRL F
1 CRLF
CRLF
1 CRLF

CRLF
1 CRLF
CRLF
SF=

30 to step

Return

Exit

2

3
1

4
4
5
1

Description

Terminates command and return to command
structure

Indicates end of entries. Returns to calling
program

Advises operator of location count and per-
mit change

Specifies location-field entry number
Specifies undefined address definition
Indicates no change in location count
Specifies location count
Octal data and instruction entry
Mnemonic entry requiring address
Mnemonic entry requiring indirect address
Mnemonic entry requiring operand
Mnemonic entry not requiring address or

operand
Specifies address
Specifies address with indexing
Specifies location number as address
Specifies location number as address with

indexing
Specifies undefined address
Specifies undefined address with indexing
Specifies operand
Specifies sealed operand (used with decimal-

entry pseudo-operations only)

TABLE XII. - FORMAT NUMBERS FOR DISPLAY COMMAND
". ~ . .~ ~. . .~ ~

Format Display type
number "7" " __~______~. ~ ~

0

Direct-address constant 5

Double-precision decimal integer 4
ASCII 3
Decimal floating point 2
Decimal integer 1
Six-digit octal

a6

Machine instruction (list mode) 9
Effective-address contents (print mode) 9
Block storage (displays number of successive zero locations)

/ Scaled floating-point decimal (see section Scaling and table X)
~ . - _ _ _ _ _ _ ". . -

aAvailable for memory display only.

31

I

TABLE Xm. - ASSEMBLER ADDRESSFIELD CODING

Code
value
Octal

0 177000
1 177001
2

4
177003 3
177002

177010 8
177007 7
177006 6
177005 5
177004

Description

Specifies octal integer data
Specifies decimal integer data
Specified decimal floating-point data
Specified ASCII data
Specifies double-precision integer data
Specifies direct-address constant
Specifies block-storage reservation
Specifies nonmemory reference instructions
Specifies external address constants required

by assembler for intersector referencing

32

I

Enter INFORMldebug
program

Operator commandlname

Name entered
I

I Command entered
I

ASCII cont ro l character?

I
I

Lifl Operator enters associated

scale factor

Store name and statistics
in memory area reserved
for INFORM names

h INFORM command
as prespecified I

I operand I
I INFORM command entered I

I
t

Check INFORM command
list and execute corres-
ponding INFORM command
rou t ine (ref. 1)

I
Debug command entered +

Check debug command
list and execute cor-
responding debug
command rou t ine

Figure 1. - Functional diagram of command structure.

NOT D t H 11 G
USE11

Figure 2 - Character packing for name words.

33

PRIMARY NAME
WUliIl TARLE

L A!;l NAME

SECONIIARY NAME
WORU TAEI1.E

-b NUMHER OF NAMES
1ST. NAME

LAST NAME
NUMREk OF NAMES
iST. NAME

NIJMHFH OF NAMES
1S1. NAMF

LAST NAME -

AUURESS
TAHLE

)RELOCATION HASE
1ST. ADDRESS

LAST AUDRESS
RELOCATION HASE
1ST. ALlIlRESS

LAST kUURESS

RELOCATION HAS€
]ST. ADDRESS

F I R S T
SUBROUTINE

1 UEHUGGED

SECOND
SUBROUTINE

34

Octal Location Location Ins t ruc t ion Address
location contents
14735 O W
14736 OOMXX)
14737 000000
14740 140040
14741 011757
14742 073760
14743 105761
14744 023757
14745 011757
14746 lOlo00
14747 024000
14750 003743
14751 101020
14752 l406M)
14753 121735
14754 014757
14755 154776
14756 003740
14757 WOoOO
14760 177773
14761 054775
14762 140702
14763 141640
14764 037346
14765 063146
14766 MXWXX)
14767 000004
14770 OoooOO
14771 000000
14772 OoooOO
14773 (XXXXK]
14774 000000
14775 177777
14776 000000

1m 000000
15001 0 2 m
1 m 2 025am
1Mo3 103oOo

name

x1

x2

YHLD
M5
YDAC
A DAT

FDAT

DDAT

SDAT

EDAT
XHLD

Y1

Y2

f ield

CRA
STA
LDX
LDA"
CAS
STA
NOP
IRS
J MP
ss1
SCB
CALL
DAC
DAC'
J MP
B SZ
DEC
DA C
B C I

DEC

DPC

B SZ

OCT
BSZ

BSZ
I R S
IR S
J MP'

field

YHLD
M5
YDAC
YHLD
YHLD

0
* -5

YYY
YHLD
YHLD, 1
x1
1

EDAT. 1
-5

2, ABC

0.1

4 \

5

177777
1

1
Y1
Y1
Y1

Comments

1st location used for intersector reference
1st location available for intersector reference
Last location available for intersector reference
Program start. Clear A register.
Store A register in 14757
Load X register with -5
Load A register indirect f rom 14761
Compare A register to YHLD
Here i f > YHLD, store A register in YHLD
Here i f = YHLD, no operation
Here i f c YHLD, increment X register. Skip i f zero
J u mp to 14743
Skip i f sense switch 1 set
S e t overflow latch
Call program YYY through indirect reference
Direct address constant

Jump to 14740
Direct address constant, indexed, indirect

One location reserved for YHLD
Decimal integer
Direct address constant, indexed
A S C I I data

Floating point

Double precision

Five locations reserved for SDAT

Octal integer
One location reserved for XHLD

Start of program YYY
Increment Y1 (r e t u r n address)
Again
Return to cal l ing program

Figure 5. - Example program for debug i l lustrations,

35

"

-
Step

2a
1

2b
2c
3
4
5
6
7a
7b
8
9a
9b

10

-

-

Enter I Terminate

- Y
I
D
P

""-
"_"
""-
""-

M a l SPACE

i I I
"_"

Octal
Octal

SPACE

SPACE Octal

SPACE
"_"

Enter

U
Octa i
Name

"Comment
W

Zero
Octal

Response

Y: IDP?
START =
PATCH =

NUMBER =

ASMBL=
NTABL=
NU M6 ER =

Display

Display

- _" - - - - -
c

- - - - - - - -
- - - - - - - - -

Go to step-

2
3
5
0
4

Return
6
7

Return
Return

10
Return
Return

- ~~

a

I

(a) Sequencing.

Description

Enters YDEBUG f rom command s t ruc tu re
Indicates INFORM initialization
Indicates debug initialization
Indicates protect-area initializatidn
Specifies start address of INFORM name tables
Specifies maximum number of INFORM names
Specifies start address of program addition area
Specifies start address of assembler buffer
Specifies start address of debug name tables
Defaults debug name table statistics
Specifies maximum number of debug names
Specifies first location of protect area
Specifies no area to be protected
Specifies last location of protect area

CY: IDP? I
START= '16000
NyMBRr '24
016426

CY: IDP? D

ASMbLr'l6700
PATCHz.16426

NTABLz'17000
NL!MBRS '24

cy: ID?? PPI ' 150UO "15003
01 7074

c

(b) Example.

Figure 6. - Sequencing and use of YDEBUG command routine.

Terminate

CARRIAGE RETURN
SPACE

CARRIAGE RETURN

"""""""""

"""""""""

"""""""""

CARRIAGE RETURN
SPACE
A
CARRIAGE RETURN

"""""""""

(a) Sequencing.

W: BASEz'14740

xxx 00
X I 00
X2 013

M5 020
YHLD 017

YDAC 021
ADAT 022
FOAT 024

SDAT 030
DDAT 026

EDAT 01477512
XHLD 036

000015
0000 u
Cii: BASE='l5OOO

Description

Enters UDEBUG f rom command structure,
Specifies relocation base for source-name entries
Specifies a source name
Indicates change of input device
Allows program to ignore comment l ines
Terminates current program source-name entry
Indicates address entry
Specifies relative address of source name
Specifies relative address of source name
Specifies absolute address of source name
Specifies input device number

YYY 00
Y1 00
YZ 03
O?OO w
000021

(bl Example.

Figure 7. - Sequencing and use of UDEBUG command routine.

36

Step

1
2a
2b
3a
3b
Q
4b
5a
5b

Enter

B
R

Octal
R

Octa I
R

Octa I
R

Octa I

-

'erminate Response
""_ B:

SPACE

---- SPACE

---- SPACE

---- SPACE

""_ ""

"_" ""

"_" ""

"_" ""

Go to step-

2
Return

3
Return

4
Return

5
Return

2

Description

Enters BDEBUG from command structure
Terminates entries
Specifies sector number
Terminates entries
Specifies first location used for intersector reference
Terminates entries
Specifies f i r s t location available for intersector reference
Terminates entries
Specifies last location available for intersector reference

(a) Sequencing.

c

(b) Example.

Figure 8. - Sequencing and use of BDEBUG command routine.

37

Step

1
Enter ITerminate I Response

P

2b (B
2c (X
2d (K
2e
3a

----- SPACE Addressa
SPACE -----

3b -
4 Addressa SPACE ,
5 Decimalb SPACE -----

Display

2 a i A
""_ P:

),
1,
),
1,

""_
""_
""_
""_

""_ ""_

6a

PARRIAGE 6b
Display ----- SPACE

R E T U R N ~

1 & Display ""_ ,c

aSee table IX.
bSee tables X and XII.
CNot allowed for register display.

Go t o step-

2
5

1
3
5
4
5
6

Return
Return

Return

Description

Enters PDEBUG from command structure
Specifies display of pseudo A register
Specifies display of pseudo B register
Specifies display of pseudo X register
Specifies display of pseudo K register
Specifies first address of memory to be displayed
Indicates single display
Indicates multiple display
Specifies last address of memory to be displayed
Specifies display format
Displays specified entry in p r i n t mode
Displays specified entry in l ist mode

Displays memory address

I, -
....

(b) Example.

Figure 9. - Sequencing and use of PDEBUG command routine.

38

of number densities shown, the floating potential profiles were probably geometrically
similar over this range.

Figure 29 shows similar data for the same electrode but with negative polarity. Be-
cause both the ion saturation current and the electrode current were linearly proportional
to the average electron number density, the density profiles were probably geometrically
similar over the range of number densities shown. The particle confinement time was
almost independent of average number density over more than a factor-of-50 variation in
these quantities, and the floating potential varied relatively little over the same range.
The radial profiles of the floating potential were probably geometrically similar over the
range of number densities shown.

Estimated error

0 Ion saturation voltage
0 Electrode current
A Floating potential
A Particle confinement time

Figure 29. - Parametric variation of particle confinement time, floating potential. electrode cur-
rent, and ion saturation voltage (relative ion number density) as functions of average electron
number density - run series AJU (table IVJ.

39

r 4b 4a L
aSee table IX.
bSee table XI.

Enter

A
Addresf
Source

Y
N

Terminate

""_
SPACE

"_"
""_

Response

A:

List ing

"""

~

GO to step- 1 Description
~~

2

Enters assembler for addition specification 4
Specifies address of program addition 3
Enters ADEBUG from command structure

Return Inserts addition into program
3 Reenters assembler for changes

~~

(a) Sequencing.
+ A : X2-3

16426

154311
1 6 4 2 7

1G431
16432
1 6 4 3 3
1 4 7 5 0

GO7 f l
14736

R
c

(b) Example.

Figure 11. - Sequencing and use of ADEBUG command routine.

40

Step

1
2
3a
3b
3c
4
5a
5b

1

I
aSee table IX.
bSee table XI.

Enter

V
Addressa

I
X
R

Y
N

sourceb

Go to step-

2
3
4

Return
Return

5
3
4

(a) Seauencina.

0
I
2
3
4
5
6
7
8
9
10
1 1
12

6 1
13

ass
LD X
LUA
IAB
C R A
LLL
SKS
JM P
CCP
UT A
JPlP
1,iS
JK P
JMP*

I ' I 00001
I 00000

XXX. A U A T 0I!Li12
00003

00004
8 UC01~5

: 6 00UC7
' IC4 ULLC8
'4 ouoo9
:e 0 0 1 1 1 ~

:4 nu111 z
'0 C O U I I

:C 00013

,104 noooci

..
14 D X - 2 COO14
\

15004
150U5
15 006
15007
1 5 0 1 [1
1 5 C l I
15012
15013
15014
15015
15016
15017
15020
1 5 0 2 1
15022

GCJ7 Y
006 011

4 : Y 2 + 1
I X r l ? % A d

Lis2
LD x
L J A *
I AU
C,{A
I L L
SKS

oc P
J:IP

O T A
J;I P
Iris
J:'I P
J l P *
J L C
J RC

Description

Enters VDEBUG from command structure
Specifies subroutine address
Specifies that subroutine is to be programmed
Specif ies that subroutine is to be executed
Specifies re tu rn to command s t ruc tu re
Enters assembler for subroutine specification
Transfers subroutine to specified location
Reenters assembler for changes

l X ~ 7 >:Ad
L

(b) Example.

Figure 12 - Sequencing and use of VDEBUG command routine.

41

T T I
Step

1
2
3a
3b
4
5a
5b
!%
5d
5e
5f
59
5h
6a
6b
7a
7b

-

a -

Enter

X
Ad&essa
SPACE

Addressa
C
M
P
0
A

SPACE
R

Addressa

SPACE

Addressa

t

-

+

Terminate 1 Response

""_ I """
----- I """
." ~ ~"

SPACE 1 ------

I ' Go to step.

2
3
5
4

6 1
5
5

Return
7
5
5

5
a
-

Description

Enters X DEBUG from command structure
Specif iesf irst address to be executed
Sets execution stop address to f i rs t address
Indicates stop address to be specified
Specifies execution stop address
Clears overflow latch (bit 1 of pseudo K register)
Sets memory modifier terminator
Sets program counter modifier terminator
Sets overflow terminator
Indicates memory-modifier termination to be qualified
Executes to stop address or as indicated by terminators
Executes single instruction (terminators not applicable)
Returns to command structure
Specifies first address that can be modified
Specifies memory-modifier termination not qualified
Indicates that only single location can be modified
Indicates that memory area can be modified
Specifies last address in area that can be modified

. -~

'See table IX.
(a) Sequencing.

14741
COC000$ OO62OCc 177773X OC1OIXI l0

0 1 1 7 5 7 STi. 1 4 7 5 7 Y 3 L O OCOUOC
n 1 4 7 5 7 : ~ ~

1 4 7 4 2
00000GA 006200t 177773X COOlXUU 01476CEFA

C737611 L U X 1 4 7 6 0 Pi5 177773

1474:
UUOODOA 0062005. 177773X COOIKOO 014770EFA

105761 L3A* 14761 YDAC 054775

14744
1747,GClA 006200b 177773X OOOIXCO 014757EFA

025757 C A S 14757 Yt ILb nnnooo

(b) Example.

Figure 13. - Sequencing and use of XDEBUG command routine.

42

-x: X I

I 4 7 4 0 XXX l4004C C,LA

P t

14750

174700A 0062000 177773X C b O l A C U

174700A 0 0 6 2 0 0 ~ 177774s OCOIK00 0 1 4 7 1 3 i F A
0 0 3 7 4 3 J L P 14743 105761

SPACE

__ ..

aSee table IX.

PV

15001
014400A O C 6 2 0 O C UOOflOOX OOOlKOC LlI5,COCEFA

0 2 5 0 0 0 I,?S 15000 YYY 014754

t

14740 XXX 140040 CdA

(NOTE: AT 121s POINT SZNSE SWITCh I IS riESEi)

U14400A 0 0 6 2 0 0 ~ OOCOOOX O (! O l % ~ o

C SET 0 1 4 7 5 2
O t

PV

14753 X2 121735 J S T * 14735

C f

014400A 0062OOb OOOOOUX lOOl%OO 015000EFA
0 1 5 0 0 0

P V
0 1 4 4 0 0 ~ 0 0 6 2 0 o h o o o o o f l x OOOlKOO 015000EFA

1 5 0 0 1 0 2 5 0 0 0 I d s 1 5 0 0 0 YYY 014754

R
c

(b) Concluded.

Figure 13. - Concluded.

- "~

Terminate
. ""_

SPACE "_"
""_
""_
-

. . __
Description

Enters SDEBUG from command structure
Specifies breakpoint location

~~ "

SR? options indicated

- . -

Figure 14 - Sequencing of SDEBUG command routine.

43

I 9 1 E i e r

2 Addressa

3b SPACE
4 Addressa

- " - - - - -

aSee table IX.

-
Step

1
2
3a
3b
4
5a
5b
5c
5d
6
7
8
9

-

-

Terminate

"""

SPACE
"""

"""

S PACE
"""

Response

R:
"""

"""

"""

Return
"""

Description

Enters RDEBUG from command structure .
Specifies r e t u r n address
Indicates ini t ial-condit ion routine to be executed
Indicates a direct return
Calls routine specified by entry
Transfers program control to r e t u r n address

(a) Sequencing.

5: 7 s

-r: = , I

aF: ' 0 1 4 7 4 2

*L: Y x X . x I + : :

t i14742 : '073761,

1G742
-3:: x1

5,l 7 r?
+s: ;i1+2

lzoozn J S T ~ ccozc

4: X 1 -YYY.YZ+l Ab
'01474:: I ' 0 7 3 7 6 0

(b) Example.

025504

Figure 15. - Sequencing and use of RDEBUG command routine,

Enter Terminate

Addressa SPACE
""_

SPACE ----- ""_
Addressa SPACE ""_

""_
""_

M ""_
Addressa SPACE

Octal SPACE
Octa I SPACE

SPACE -----

"""

"""

"""

"""

UNIT-
UNIT-
UNIT=

T:

WSK=
"""

""" Return
Return """

Description I
Enters TDEBUG from command structure
Specifies first address of memory to be transferred
Transfers only single location
Indicates transfer of a memory area
Specifies last address of memory to be transferred
Indicates transfer to output device
Indicates verification against input device
Indicates transfer from input device
Indicates transfer to memory
Specifies start of location to receive transfer
Indicates no specification of last-address counter
Specifies six-digit octal mask and transfer
Specifies octal device number and transfer or verify

"

See table IX.
la) Sequencing.

e ? : XXX.S>AT e;YX.SI.AT+4

15C43 : U1441)O
15C44 : 0 1 4 4 0 3
- I : SbAi -SLAi+4
,.fLV? P LIfIIi= '2

; l P L V 7 V Jh I i - ' I
-1: S U A 1 +S;Ai+4

L:

el: SdAi e;;.,i+4
' :PLV? L ; r , x i = * I
+

I b) Exa mp le.

Figure 16. - Sequencing and use of TDEBUG command routine.

44

I

I Operator commandhame
soecification

(NAME) 1-
I I I decoder

I m INFORM name ent ry

opened data

Output data display
c

for mat
c table in specified

Display scaled

name
c c value of referenced

Display statistics -
name

c of referenced

Overlay referenced

and statistics
+ - namewi th new name

Scale and store

Set external
c

location
c address bias

Other INFORM
commands

(a) INFORM commands.

lr 1

Ini t ial ize - 4 INFORNVdebug
(YDEBUG)

U" -
Learn source - -L names and addresses

(UDEBUG)

B"

Learn intersector - -L reference statistics
(BDEBUG)

P' ' -
Display referenced

-L

C' '

- memoryor register
(PDEBUG)

-
Modify referenced - - memory or register

(CDEBUG)

P'
Insert addit ion - - to program

(ADEBUG)

V' -
Execute operator

-L

'X '

- supplied instructions
(VDEBUG)

Execute program
.L - statements

(XDEBUG)

S"

-L

Set program - breakpoint
(SDEBUG)

Return to
program breakpoint

(RDEBUGI

Transfer information
(TDEBUG)

(b) Debug commands.

Figure 17. - INFORMldebug command structure.

45

lllI l l l l l lllIIlllIlllllIIlll I

Enter YDEBUG from
command s t ruc tu re

Operator command specification
IINPTl

YDEBUG command decoder I
of INFORM name and statistics tables

Operator specification of
maximum allowable number OK
of INFORM names -

Operator specification of start
of area reserved for program
additions

No
~

Operator specification of start Error . enter
location of source name and
address tables

Did operator

character ?

INADRI INADFl Yes
OK

I Return to I
command
s t ruc tu re

Operator specification of
maximum allowable number
of source names

IBILNl
Advise operator of next
available location

~

to be protected
init ial and f inal locations

OK

Error
"P" Operator specification of 1

i
- - No I Did operator enter

Advise operator of error I -
b

Return tocommand I st ruc ture

Figure 18. - Functional diagram of INFORWdebug initialization command (YDEBUG).

46

(umber
I

Operator specification of
current program's
relocation base c
Set address of c u r r e n t

to [NADRI+IBILNl-IACUI
program name counter

[NADRl to zero to indicate

name counter to 1

Store current program
relocation base in

INADRI+ZIBILNI
location specified by

I- ,-

Increment INADRI

I
T
-1-

name or command

-4 Name

I field command character
Operator entry of address .

Address field command
decoder

Restore current input
device number

L
Advise operator of total
number of source names
entered and store in total
counter

I

Return to command

I
i

Other

Address termination
decoder

UDEBUG command
decoder 4 Operator specification

of new input device
number t

Ignorea l l inpu ts t until cu r ren t l i ne
completed

Other -

I Increment current program
name counter IACUl I-

Add relocation base to address
and store in location specified
by [NADRI+ZIBILNI

H-h 1 Store primary and secondary
name buffers in locations
specified by INADRI and
[NADRI+IBILNI, respectively

octal entry for absolute
addressing

I I ' I

Figure 19. - Functional diagram of source-name table input command (UDEBUG).

47

I I

Return to command structure
4
I

Advise operator of error I

I Store as sector number
specification I

-

*

1

Command I Operator octal datalcommand

I input

reference location in
specified sector IASECl

1
Command I Operator octal datalcommand

I inwt h
I '

I
Octal data ' I

Store as f irst intersector
reference location available
for use in specified sector

IBMlNl

Command 1 ;;I;? octa l data lcomynd 9
I

Octa I data

reference location available
for use in specified sector

lBM4XI

Figure 20. - Functional diagram of intersector reference statistics input command (BDEBUG).

48

I

Enter PDEBUG
from command structure

"p"

Operator address
counterslcommand Address
input

- I l l PDEBUG command

Other

4 Store contents of pseudo
A register in display

Store contents of pseudo
B register in display -c

location

"(x' X register in display
Store contents of pseudo

location
.-c

I

input

in selected format on
Display location printed

I Return to command structure I

factor reference
(GSFR)

I Error

Other

Advise operator of error

I

(TTYR)
I I

Operator input of scale
factor reference

Default

"(

c_

Other

for scaled display;

pr int mode
set terminator for

I

decoder

by address counters

:ARRIAGE List mode: list addresses
TURN" and their contents as

specified by address c

I counters

I

I I

mber

Figure 2L - Functional diagram of display command (PDEBUG).

49

Enter CDEBUG f rom
command structure

Command address counters or Address

commands

CDEBUG command decoder

Load location of
pseudo A register

"(B"

Load location of pseudo KEYS
I ' t

1 + (PTCH) 1 Input, assemble, and l ist
operator instructions

Ver i fy that t ransfer wi l l
modify pseudoregisters

buffer to pseudoregisters
o r re tu rn

(TRAN)

I Return

Return to command structure

#her 1 4 Advise operator of e r ro r I

t
t

Input, assemble, and l ist
operator instructions

(PTCH)

I
Transfer assembler buffer
to locafion sDecified by f i rs t I address counter or return

(TRAN) I
Transfer complete I Return

Add number of words used

first address counter
- in assembler buffer to

! -
es Verify that first address - counter equals last

address counter

No
Increment f irst address counter
and store last buffer word in -
location specified by counter

Figure 22. - Functional diagram of registerlmemory change command (CDEBUG).

50

I

Enter ADEBUG from
command structure

ODerator specification of

commands
(CMMP) h

I

Address ' I

Input, assemble, and list
operator instructions

Compute intersector reference
to contain location of addition

(SB SE)
1

Compute instruction required
for transfer to addition

List instruction and

for verification

to location specified by
Transfer assembler buffer

patch counter or return

Store addition location
in intersector reference

Increment counter of
next available intersector
reference for current sector

counter to reflect
Update program patch

[Return to command structure I

Enter VDEBUG
from command structure

Command address ciunters or
commands

(CMMP)

of VDEBUG commands

VDEBUG command
decode

~~

operator instructions
Input, assemble, and list 11111

(PTCH)

I
Transfer assembler buffer
to location specified by first
address counter or return

(TRAN)

Transfer complete Return

+
Advise operator of error specified by f i rst address

counter
"R'

Return to command structure

Figure 24. - Functional diagram of subroutine specification and execution
command IVDEBUG).

Figure 23. - Functional diagram of program addition command (ADEBUG).

51

I I l l 1 I 1 I l11111111l11llI

Operator specification of
Enter XDEBUG from address counters or Command
command structure commands

(CMMP)

7 Address

I I

Reset all execution stop flags

[AFLGI, [RFLGI, [FLOVI

+ -
+ I /

Operator command input
(INPT)

4 XDEBUG command decoder

“C” Clear machine overflow latch

1 1

Set execution stop latch I

instructions
“M” for memory modifying -

f

“P” for program counter -
[AFLGl

Set execution stop latch

modifying instructions
[RFLGI ,

11

Is f i rs t address counter
equal to last address
counter ?

Advise operator of
overflow condition

I

Decode and analyze
instruction specified by f i rs t
address counter (XSRH)

I s instruct ion a memory
modifier?

Yes

I Set execution stop latch I -7 for overflow condition
IFLOVI

4
Operator specification of

commands ICMMPI
- address counters or

I1 -

Address

I'

Restore address counters
-L area according to address counters.

Define memory modifier override

Command
I

t
No Is effective address

* within memory modifier
1 override area? ' 1 Yes 1-
-1 Is [RFLGI set?

ll

1 Yes

Is instruction a program
counter modifier Yes

[IJMPI, [IJSTI
1 No I

4 Return tocommand structure 1

Secondary XDEBUG
command decoder

, I I l l 4 1 1 - 1 1 Negate memory modifier
override area HI

I

' 111
Advise operator of error

Execute instruction
specified by f i rs t address
counter

"SPACE"
Execute instruction
specified by f i rs t address
counter (XCUT)

Figure 25. - Functional diagram of execution command (XDEBUG).

Enter XSRH

1
Reset instruct ion type
indicators

I IJMPI[IJSTH IAMl

set for instruction specified
by f irst address counter

(FNDM) structure

Execute normal
return f rom XSRH

4 I I I

Store instruct ion in
instruction simulator
location

Is instruction an unconditional
jump?

Set unconditional

I

1 No
IIJMPI 1

Set subroutine H y
call indicator Is instruction a subroutine

cal l? IIJSTI

modifier ?

Set memory modifier 1 I I IAMI I indicator

, t =

Obtain effective
address of instruction

Combine effective address
with instruction's index
flags and store i n
simulated address reference I

simulated address reference

Reset index flag and set

~

N~ Is effective address t
return f rom XSRH contained i n protect Advise operator

area specified i n YDEBUG?

Figure 25. - Continued.

54

I

Is instruction an
unconditional jump?

IIJMPI

in f irst address counter
-~

,I

Load all registers
with contents of
pseudoregisters

address counter
Increment first

Execute simulated
indruction

counter to reflect any
conditional skips

address counter

Store contents of all
registers into pseudo-
registers

", Return from XCUT

Figure 25. - Concluded.

55

Enter SDEBUG f rom
command structure command input (CMMP)

Address I
I

specification

Return to command
structure

SDEBUG command decoder

dzl 1- Search breakpoint address

werator Not found
of error I by first address counter

buffer for location specified

Are five breakpoints
active?

address counter in
first vacant location in

Store content of location
specified by f i rs t address
counter in breakpoint
content buffer location
corresponding to address
buffer location

location and its content

I
Store call to SDEBUG
reentry location in
breakpoint location

Found I

"S"

Search breakpoint address "R"
buffer for location specified
by f i rs t address counter t- 1 ~ Other

Not found

I Advise operator of error I_
1

I Return to command structure I
L 1

tent buffer location correspond-
ing to breakpoint address buffer
location specified by f i rs t ad-
dress counter into breakpoint
location

and its content

registers in pseudo-

1
I structure

Return to command

Com ma nd

Figure 26. - Functional diagram of breakpoint command (SDEBUG).

56

piGiGGl
command structure

Operator address
counterslcommand Command
input (CMMP)

Address

Advise operator of error
last address counter ?

Call initial condition
subroutine specified
by content of last
address counter

contents of pseudo-

to location specified by
first address counter

I Return to command structure I

Figure 27. - Functional diagram of program return instruction (RDEBUG).

57

Enter TDEBUG from
command structure

Operator specification of
address counters or
commands (CMMP)

Address
.. ""

Operator command input

l
TDEBUG command decoder I

output device number

by f i rst and last address

input device number I

lnout binarv and comoare I

I (VERIFY)

I I

1 ' I" I Operator specification of input device number
Error

Input binary and store i n
area specified by f irst and
last address counters

(LOAD)

I I

I 1 I
Operator specification of
address counters or
commands ICMMP)

Command -
~

1 Address
Operator input of desired
mask

Octa I 1 - '
entry Advise operator of error

Transfer locations specified
by saved address counters,
masked as specified, to
area specified by f irst

Return to command structure address counter
I

Figure 28. - Functional diagram of data transfer command (TDEBUG).

58

operator starting location

Reenter PTCH at operator

(TRAN)
option after listing - -

1
Reset undefined address flag

Location field command
specification by operator

Location field command
decoder

I Return to command structure 1 "R"

Do operator instructions
contain references to
undefined addresses?

Advise operator of
undefined references

+
I Assemble oDerator instruction I

4 Advise operator of format error I
Error

to LTXXl
and address field corresponding

~~ .

c

-
I /

~

Exit PTCH -

~~ t
List existing intersedor

assembler
references used by

(LIST)

t
List intersedor reference
formed by assembler
ICODEl (LIST)

set I using IPLCi as the base address
(LIST) - (ASEM)

Advise operator of location "M"
specification by operator count IMAXl -

I , I, -

Other
Error

__
t n Set undefined address flag

[DOLL] to number
indicated In1 OK

-

[MAXI

Advise q-L Ofher
format'error -

". ~ r
- " ~ "c __ ~

(a) Part I (PTCH).

Figure 29. -Functional diagram of debug assembler.

undefined addresses in previous
instructions with ITXXl

t
1 wi th sDaces

Fill remainder of location field I
t

Store In1 in location index ITXXl I

59

Enter CMDI from PTCH Advise operator error
of instruction buffer? exit CMDI

I Clear instruct ion word;
set character counter to -3 I

Instruction character
input

"APOSTROPHE"

or octal data
Is character counter
I -3?

Error = No Yes

t
1 Error exit from CMDI I

"SPACE" Is character counter
zero?

Reset indirect flag

Xher_l Is character a letter
I or a number less than 5?

Subtract 226 from number;
truncate to 5-bit binary

Error exit from CMDI

A I
Increment character Is character counter 1 counter zero?

Yes I

1
Is character counter

I negative? I

counter

I + I Shift instruction word left
I 5 bits and add character

Search instruction set

with op-code and type
for mnemonic. Return

(FNDI) Store octal entry in I instruction word A

1 word , I Store octal entry
indicator ICODOI in address

(b) Part I1 (CMDI).

Figure 29. - Continued.

60

#P I

Instruction type decoder I
I

Shift 4 Obtain aperator shift count
entry TTOCT)

I I I

1 Error exit from CMDI

Obtain operator octal entry t-0 N
I

I I

-4 (TANY)

~ s s , BSZ pseudo-op Operator enter number [nl of
locations to be reserved

DAC pseudo-op
entry

undefined address?

L

t Error I
Operator enter number [nl of
words reserved for ASCII
infor mation

I

L I

I

Form instruction word:
(1) Set indirect bit according

to indirect flag (BIT 1/601)
(2) Set index flag according to

(3) Set op-code i n bits 3 to 6
(GETN) index specification (BIT 2)

(4) If undefined address, set bit 16
(5) I f location-field address, set

hit 15

instruction word
Store instruction in

1 word t [AREGI
Store address i n address

I.. -_ I

Combine op-code and
argument to form instruction.
Store in instruction word

- indicator [COD71 in
Store machine instruction

4

[BREGI
address word [AREG]

Store op-code in instruction word Store negative shift count
i n address word -

IBREGl [AREGI

. ~~ Store machine instruction

IBREGl address word
Store op-code in instruction word -. indicator [COD71 i n --

_ _ ~ (BREGI

~

Advise operator error exit
(CMDI) I 1

Modify address:
(1) Set indirect bit according

(2) Set index bit according to
to indirect flag

13) I f address i s a location-field
(GETN) specifications

address add I PLCl

Store address in instruction word

1
[BREGI 1

Store direct address constant
indicator [COD51 in address word

[AREGI I
..

1

Fi l l [n l locations of
instruction buffer with
zeros starting at location
specified by [TXXI. Fi l l
corresponding locations
of address buffer with
block-storage indicator
LCOD61. Increment [TXXl
by (n - 1)

0
I

(b) Continued.
Figure 29. - Continued.

61

I Is [TXXI + [nl > instr"
Advise operator
error exit

No 1 (CMDI)

Operator enter ASCII
character

No
Operator enter ASCII Store character in left instruction buffer specified
character half of instruction word by ITXXI. Store ASCII data

indicator [COD31 in corres-
ponding address buffer h a -
tion increment ITXXI

Store instruction word in

Did operator enter Store ASCII space
a carriage return character in right half word

Have In1 instruction
words been stored?

Store instruction word in
instruction buffer specified
by [TXXI. Store ASCII data

address buffer location
indicator lCOD3I in corresponding Store two ASCII space

+ characters in instruction

(bl Continued.
Figure 29. - Continued.

62

termination decoder

I I I
I

Store integer data in instruction

indicator ICODll In address word
[word. Store decimal data . , ~

Store most significant word
of floating-point data in
instruction buffer location

floating-point indicator ICODZI
specified by ITXXI. Store

in corresponding address
buffer location.

""EnterlCKS2

r - r - = = No Did operator terminate decimal Yes
data entrv with a "SPACE"?

I Operator input of scale
factor reference

(GSFRI

&try]- I Error I

I data , (a241 I
Convert to double-precision

___-

double-precision data in in-
struction buffer location speci-
fied by ITXXI. Store double-

corresponding address buffer
precision indicator ICOD41 in

location.

word in instruction
word. Store ICOD21
in address word.

of instruction buffer?

Yes

Advise operator error exit

word in instruction
word. Store [COD41
in address word.
Increment lTXXl

< Error exit CMDI

Default

r- -Set IMAM = ITXXI

data entry by floating-point
Divide floating-point decimal

scale-factpr reference

dat-i
Store result in decimal

~ ~

I ~- Exit CKS2

(b) Concluded.
Figure 29. - Continued.

63

I Store sector number of
IPBBSI in ISSBVI I

Set instruction buffer
index ITXXI and assembler
buffer index IXXTI to zero

Store instruction counter
[MAXI in instruction
limit ITMAXI . to zero

Set intersector bias counters

IABIOIIABIlIlABIZI

Exit ASEM

Store sector number of
IPBBSI + ITXXI in [SSVO

I I s the content of the
address buffer location
specified by ITXXI O ? . address buffer with

Merge content of

instruction buffer location

location specified by ITXXI in as -
sembler buffer location specified

Store instruction i n assembler
buffer location specified

specified by [TXXI =

Mp IS sector same as
specified by I S S V O ?

specified by ITXXl

corresponding 9-bit address
Merge instruction with

and store in assembler
buffer location specified
by IXXTI

(cl Part I11 (ASEM).
Figure 29. - Continued.

64

Merge indirect and index
bits from instruction word
to address word and

Search intersedor reference
data, supplied through BDEBUG, Foun_d Q
corresponding to sector specified

Store intersector reference
address in address buffer
location specified by [TXN

data SUDDlied for sector 0 I

Not found

Increment instruction I s the assembled program
counter IMAXI and to be inserted into program

addition area? instruct ion l imi t [TMAXI

I
No Is [MAXI >length of

instruct ion buffer?

Yes

Advise operator return to
(PTCH) reentry point

I
Store ISVADI in instruction
buffer location specified
by [MAXL Store DAC indicator
[COD51 in corresponding
address buffer location

1
Add [MAXI to IPBBSI to form
intersector reference
address

1

No
I Determine f irst available I

address
intersector reference

I of intersector reference I Determine sector number

address I

.
Set indirect bit and reset
index bit of ITXXI specified
instruction in instruction
buffer

Yes Increment intersector reference
* - address by [ABIDI. Increment

[AB IO1
,I

Yes Increment intersector reference
* - address by [ABIII. Increment

[AB I11
I

No Increment intersector reference
* - address by IABIZI. Increment

[AB I21

I

I Increment instruction I I counter
[MAXI I

Is [MAXI >length of Yes Advise operator re tu rn to
instruction buffer? (PTCH) reentry point

Store ISVADI in instruction
buffer location specified
by [MAXI. Store external
address indicator [COD81
in corresponding address

address in assembler
buffer location specified

I buffer location I 1

(c) Concluded.
Figure 29. - Concluded.

65

+ Enter LIST

Store X register in location
[A I 1 as address where
instruct ion is to be inserted

[LOU as address where

(DLMP) as pr in t code or

and l ine feed to l is t ing device

P r in t [A I I I , name assigned
i f any, and its octal contents

(PGEN)

Space l ist ing device to
instruct ion f ield

Block-storage pseudo-op [BSZl:
(1) Space device to address field
(2) Print number of successive

zeros stored in locations
specified by contents of [Lon

c

Direct-address-constant pseudo-op
[DACI:

(1) Pr in t i f ind i rect b i t of
instruct ion specified by ILOII
S e t

(2) Space device to address field
(3) Set indexing indicator if

index bit of instruct ion set
(4) Reset index and indirect bits
(5) Pr int resul t ing address,

name i f any, and octal contents
(PGEN)

Double-precision-constant
pseudo-op IDPCI:

(1) Space device to address field
(2) Pr in t double-precision num-

ber specified by contents of
[Lon [Lon

c
11

(1) Space device to address field
(2) Pr int ASCII informat ion as

sDecified bv contents of [L o n

lo I

I s [DLMPI : 7 ?

of location specified by [LOU.
Find instruction mnemonic I , (FNOM) I and type.

[TYPO = IDLMPI t 6

Load pseudo-op mnemonic
from pseudo-op mnemonic
list as specified by [DLMPI

I r Decodemnemonic word and
p r in t each character

IFPCI:
(1) Space device to address field
(2) Print floating-point number

8
c

(1) Space device to address field
(2) Print decimal integer speci-

(1) Space device to address field
(2) Pr in t octal integer sp t i f i ed

c

Memory reference instruction:
(1) Print "*" i f indirect b i t of

instruction specified by ILOIl
Set

(21 Space device to address field
(3) Set indexing indicator if

index bit of instruction set
(4) Obtain instruction address

f rom address bits, sector,
bit, and contents of [AIII

and contents (PGEN)
(5) Print address, name, i f any,

Note Ignore step (3) for type 4 entry

F Exit LIST

I

Figure 30.

6
)-.

5
c

4
c.

(1) Space device to address field
(2) Print instruct ion operand

(1) Space device to address field
(2) Print shifl count contained

Other machine instructions,
no address output required

-Functional diagram of instruct ion l ist routine (LIST).

Enter PGEN

Print specified address
in octal

If indexing indicator set
p r i n t "1"; i f not, p r i n t
two spaces

Search source address
tables and INFORM
address tables for
specified address. If
found, return corres- I ponding name.

(NFIN) I

Print contents of
specified address
in octal

1
I Exit PGEN I

Enter FNDM

result to memory reference
op-code list

9 Enter FNDI

set for specified mnemonic

Exit FNDI

I I
U address of FNDI

Increment return

Is i t a memory-reference
instruction ?

I I I

address with corresponding

Increment return address
I

Is it any other machine
instruction ?

I
I s it [OCTI
pseudo-op?

I Increment
No

1 I s it a [DECl or [OCTI pseudo-op?

Increment return address

' Yes

No

I

iFound
I IS i t an X register instruction? I-

I

7 1 Found

Logical AND instruction word

to first input-output instruction
list

with.177077. Compare result to
Lqlical AND instruction word

second input-output instruction

shift instruction list

Exit FNDM with proper mnemonic
and indicate type 1 instruction

Found

and indicate type D instruction

Increment return address

Is it a [DAC] pseudo-op?

Increment return address

68

Figure 31. - Functional diagram of instruction search routines (FNDI) and (FNDM).

I Enter GSFR I

'perator enters floating-(Character point numerator or
character

I
Yes I Is denominator zero? I

denominator to form
engineer ing un i ts l
machine un i ts

Store resul t in scale
factor

Use last-entered scale

I -
I

Error exi t f rom GSFR I

EII?zzl Default exit from GSFR

specification

for specified name
(FIND)

Found

I

of 2, nn, in decimal

Obtain scale factor
assigned to entered
name using index

Store resul t in scale

Store
2 nn engineer ing uni ts l
32 768 machine un i ts
in scale factor

Error exit from GSFR f-

Store 10 volts/32 OOO machine

A

I Entry exit from GSFR I
Figure 32. - Functional diagram of scale-factor i npu t rou t i ne (GSFR).

69

Enter TRAN

Save A register entry
as transfer location

Enter SBSE 1
I

Is next available location
for intersector reference
w i th in specified sector

Return [BMINI of specified Yes

IBMlNl less than last
-L - sector as intersector

available location [BMAXI?
reference location

1 1

Is next available
location for intersector

location ?
location less than last available

- as intersector reference .-c reference in sector 0
Return [BMINI of sector 0 Yes

i

No

Advise operator that
no intersector reference
locations are available

I'

+
Return location 0 as
intersector reference
location

Exit SBSE

Figure 33. - Functional diagram of determination routine for intersector
reference locations (SBSE).

I
Return exit from TRAN

1 Yes

w Clear transfer counter

t
Is content of address
buffer specified by
transfer counter an
external address

Yes

I
Store content of assembler
buffer location specified
by transfer counter into
location specified by cor-
responding instruction
buffer location

reference counter
IBMlNl corresponding to

indicator [COD81?

counter, store content
of assembler buffer in

i. e., transfer counter
>[MAXI?

I Yes

Transfer complete exit
f rom TRAN

Figure 34 - Functional diagram of assembler buffer transfer routine (TRAN).

* Enter CMMP

Obtain operator address I ent rv lGFTNl
I , - -

Verify that address i s n o t indexed
or an assembler location-field
entry or undefined address (CMCK)

Error

OK

Set temporary first and last
address counters to operator
address en t ry

I
Operator command specification

(INFT)

I

Address

or an assembler location-field
entry or undefined address (CMCK)

Set temporary last address
counter to operator
address entry

"SPACE" I
t

Transfer temporary counters
to first and last address
counters

c
Set current program indicator
ICSUBl and program relocation
base ICBSEI according to f i rs t , Other , address counte; (csn) ,

Address exit from CMMP

- I c -
Advise operator of address er ro r

Return to command structure

Figure 35. - Operator address-counter and command-specification routine (CMMP).

71

I Enter CSET
1

Store location of start of
f irst source program name
table [NADfl in c u r r e n t
program indicator [CSUBl +

Store relocation base of
f i rst source program (contents
of f i r s t source-address table

base ICBSO
location) in current program

I' Does location in source-name I
table specified by [XI indicate
start of new proqram name

I

Yes I s content of corresponding
No - source address location >

- No I S [XI = last source name first address counter?
location [NADRI?

Yes
No

IS it > [CBSEI?
Exit CSET I' Yes

Store it in [CBSEl
store [XI in [CSUBI. I - -

Figure 36. - Functional diagram of current-program indicator and relocation-base
in i t ia l izat ion rout ine (CSET).

72

Enter GETN

[RSUBI to current-program

Set address relocation base
[BASEI to current-program
relocation base [CBSEI

Set addresshame bias [RILU
to source-name table bias
[B ILNl +

Command Call common address input
(GETA) rou t ine

I & Address exit from GnN

4
Command exit from GETN I

I Enter CMCK
I I

I s e t ?
I s indexing indicator (X register)

I I

Is assembler location address
indicator set? (bit 15 of
register)

Is assembler undefined
address indicator set?
(bit 16 of A reqister)

I OK exit from CMCK I

I Error exit from CMCK 1

I -- Enter ADRS I

dicator [RSUBl to start
Set address program in-

location of (INFORM)
name table [DINTI

Set address relocation base I
Set addresshame bias [RILII
to INFORM name table
bias IB I L I l

I
I I

Call common address input rout ine ' Comman_d
(GETA)

or an assembler location-field Error
entry or undefined address

(CMCK) + OK I Address exit from ADRS 1
I

I Error exit from ADRS I

Figure 37. - Functional diagram of operator address entry and verif ication routines (GETN), (ADRS), and (CMCK).

73

[BIAI to zero. Reset assembler
address indicators (bits 15 and
16 of [MAS KI, reset address
indexing indicator [INDXl

Operator input of name
or command

(NAME)

Expand delimiter to f u l l
ASCI I (i. e., add “0) .
Store in IDLIMI.

I s name entry indicator [NLTHI Store contents of corresponding
source-address-table location in
address relocation base [BASEl

Decrement address 1
No

Store total source-name
counter in first program
source-name counter

Does th i s address indicate
start of a program name table? -
(i. e., is content zero?)

Yes

ment between primary-.and
secondary-source-name tables
IBILNI. Load X register with

Add [NADfl to index returned

start of primary-source-name
tables [NADFl

Search all source names
for operator-specified
name (FIND)

Found

Store (GETA) re tu rn address

I
Was (GUAI entered from (ADRS)?

Return to command structure

(ADRS)

Address exit through [HDLAI I
Error exit through [HDLA- I

Figure 38. - Functional diagram of common address input routine (GETA).

74

entry

IGTYR)

buffer?

Command exit from GETA

"I" Operator octal number entry

Advise operator of octal
entry requirement

I

Load A register with ASCII '
"APOSTROPHF'

I d Operator octal number entry

Add IBASO to octal number
entry

Store number inlADD1.
Load operator termination

. I

1
Operator termination code entry

IINPT)

ASCII #. Command

.. -.

SGrEh table specified by
..

to operator name entry =
I INDM RETURNED1 + ZIBILII + 1

Add contents of this

Use IDLIMl as entry
termination code

r

L

Operator negative-number entry
IGTYR)

I

I Reset machine overflow indicator I
I 1. I Add entry to internal address bias 1
I 4 Is overflow indicator set? I

comma(d with X. exit from G n A I Advise operator load A reglster

dexing indicator IINDXl

Operator termination entry

I I Command exit from GETA

I- IADDl = lADDl + IBIAl

q-- - Command exit GETA

Figure 38. - Continued.

3 from GETA

I T 1
No

75

IIITYKZIJ Operator number input Number defaulted

Number entered I I code , Save entry termination

I intwer I Convert entry to octal

Did operator default entry
with a 'I E"?

& Exit GTYR

Operator input of termination
(INPT)

address bias location
(filled through an INFORM
command) as operator

Command exit from GETA

- Concluded Figure 38.

76

I Ent-1
-~

(NLTH)

Store truncated ASCII space
characters ('40) in five-
character words. 1x1 = 0

"~ 1

specified character
(INFT)

~-
I s character a number

"~

I Store cha=k No
I p -, ,

1

I Store character in
character word specified F-, characters been entered?

II Shift character words
down one location

I Advise operator of er ror

Pack character words i n to
name buffer words

Exit name with
IDLIMI in A register

Figure 39. - Functional diagram of name-command specification routine (NAME).

77

1

I Enter NFIN I I Enter FIND I

Found

corresponding name word

corresponding name word

table for name specified
Search specified name

in name buffers IBUFl I and [BUF + 11

17 Found
Return displacement of
name f rom start of
table as index

I Found exit from FIND 1

6 Not-found exit from FIND

tables for specified
address

space characters

Exit NFIN

Figure 40. - Functional diagram of name table search routines (NFIN) and FIND).

78

National Aeronautics and
Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $300

THIRD-CLASS BULK RATE

2 1 IU,G, 033019 S00903DS
DEPT OF THE A I R FORCE
AF UEAPONS LABOBATORY
ATTN: TECXNICAL LXRRARY (SUL)
K I R T L R N D AFB NPI 87117

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA451

POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return

